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Abstract. This paper presents the evaluation of several solid wall boundary conditions when used in the numerical 
solution of the Boltzmann equation using the finite-difference/finite-volume methods. Five solid wall boundary 
conditions are considered: (a) adsorption, (b) specular reflection, (c) diffuse reflection, (d) Maxwellian reflection, and (e) 
adsorptive Maxwellian reflection. The boundary conditions are applied on a two-dimensional discretized velocity space 
mesh.  Methods for applying the same boundary conditions on a three-dimensional velocity space grid are also presented.  
The boundary conditions are implemented for the numerical solution of the hypersonic rarefied flow over a flat plate 
using a three-dimensional generalized Boltzmann equation (GBE) solver. The derivatives that contribute to heat transfer 
and skin friction at the solid boundary are calculated and compared. Recommendations for further evaluation of the 
boundary conditions are made. 
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INTRODUCTION 

Application of appropriate boundary conditions in the computational domain is crucial to obtaining accurate 
solutions for any problem being solved analytically or numerically.  Appropriate types of boundary conditions must 
be implemented on various boundaries of the computational domain.  The various types of boundary conditions, and 
where they are applied in the computational domain, are discussed in the following sections. The main emphasis is 
placed on the solid wall boundary conditions. Five types of boundary conditions: (a) adsorptive, (b) specular 
reflection, (c) diffuse reflection, (d) Maxwellian reflection, and (e) adsorptive Maxwellian reflection are considered, 
implemented, and evaluated for their accuracy in computing the skin friction and heat transfer on the solid wall. 

INFLOW BOUNDARY CONDITION 

The inflow boundary condition is assumed to be a Dirichlet boundary condition.  It is assumed that the inflow 
boundary is at equilibrium. A Maxwellian distribution function centered at the mean velocity of the incoming flow 
is used at all the grid points of the inflow boundary. This condition is maintained at each time step. An example of 
the inflow boundary condition using the Maxwellian distribution function is shown on the left side (L) of Figure 1. 

SOLID WALL BOUNDARY CONDITIONS 

Five solid wall boundary conditions are considered for application to the problem of flow around immersed 
bodies – adsorption, specular reflection, diffuse reflection, Maxwellian reflection, and adsorptive Maxwellian 
reflection.  These boundary conditions range from relatively simple to implement to difficult to implement, and from 



physically unrealistic to requiring tuning of the accommodation coefficient to match the empirical data. The 
formulation of each of these boundary conditions and their implementation are discussed in the following sections. 

Adsorption 

The adsorptive boundary condition is analogous to the no slip boundary condition for viscous walls in continuum 
solvers.  Adsorption needs to be accompanied by a de-adsorptive phase in order for the conservation of mass to be 
satisfied at the solid wall boundary. An approach for modeling adsorption/de-adsorption at the wall is to apply a 
Maxwellian distribution centered at zero velocity using the probability densities from the physical space grid point 
at the preceding time step. This approach to the adsorptive boundary condition, as applied in a two-dimensional 
velocity space is illustrated in the right hand side (R) of Figure 1. The inflow boundary condition is also depicted 
with the adsorptive boundary condition for reference. The adsorptive boundary condition is independent of the angle 
of incidence of the surface relative to the incoming flow. Application of this method to a three-dimensional velocity 
space simply involves utilizing the Maxwellian distribution that is a function of the three coordinate direction 
velocities. 

 

  
 

FIGURE 1.  Inflow boundary condition (L) and adsorptive boundary condition (R) 

Specular Reflection 

The specular reflection boundary condition implies that molecules reflect off of the solid wall with the angles of 
incidence and reflection being equal. A fundamental assumption behind specular reflection is a completely smooth 
surface. Making that assumption is not completely realistic when simulating molecular interactions with a real 
surface. The magnitude of the velocity after the collision is the same as the velocity before the collision. However, 
the component of the velocity vector normal to the surface changes sign.  The normal vector, n̂  of the solid wall 
needs to be calculated at each physical space node. Then the reflected velocity, rξ

v
 can be related to the incident 

velocity, iξ
v

, using Equation (1). The probability for each point in the reflected velocity space is calculated using 
weighted area interpolation for a two-dimensional velocity space, using Equation (2), or weighted volume 
interpolation for a three-dimensional velocity space.  The relationship between the areas, A, and the probabilities, f, 
are shown in Figure 2. The interpolated probability value is then transferred to the reflected velocity space grid point 
using Equation (3). The results of applying the specular reflection boundary condition in a two-dimensional velocity 
space for two angles of incidence (90° and 0°) are shown in Figures 3. 
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FIGURE 2.  Weighted area average for incident molecule probability undergoing specular reflection 
 

 

  
 

FIGURE 3.  Specular reflection boundary condition for incidence angles of 90° (L) and 0°(R) 
 
The solid wall boundary surface can be visualized as a plane within the three-dimensional velocity space that 

intersects the origin and is perpendicular to the surface normal.  In these two-dimensional representations, the plane 
collapses to a line that lies within the uv plane. Again, the line runs directly through the origin of velocity space.  
These figures illustrate that the distribution function contained in the velocity space domain that is located in the 
direction opposite the surface normal is reflected across the plane (or line) that defines the surface boundary into the 
domain of velocity space that is located in the direction of the surface normal. For the surface perpendicular to the 
incoming flow, almost all of the distribution function is reflected into the upwind part of the velocity space domain.  
At an incidence angle of 0° (a surface parallel to the incoming flow) only half of the distribution function is 
reflected, essentially reproducing the inflow distribution function. The specular reflection boundary condition is 
equivalent to an inviscid wall in a continuum flow solver. 

Diffuse Reflection 

The diffuse reflection boundary condition is a better approximation of the seemingly random interaction of 
molecules with a rough surface.  The diffuse reflection can be modeled by using uniformly distributed set of random 
numbers to vary the velocity of the reflected particle.  The molecular speed values can be generated using the 
cumulative distribution function, as presented by Shen [1], shown in Equation (4).  In Equation (4), rξ

v
 is the 

reflected velocity, k is the Boltzmann constant, m is the molecular mass, Tr is the temperature of the molecule 
undergoing the reflection, and ranf is a random fraction uniformly distributed between zero and one.  For a two-
dimensional velocity space, the scattering direction, θ, is determined from a uniformly distributed random number 
between zero and π, as shown in Equation (5).  For a three-dimensional velocity space, the scattering direction in the 
plane parallel to the surface, φ, also needs to be considered. The pre-collision probabilities are incrementally 
distributed to the reflected velocity space grid using a similar weighted area (or volume) approach as for the specular 
reflection. A total probability for each reflected velocity space grid point is determined by summing all of the 
incremental contributions.  
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FIGURE 4.  Diffuse reflection boundary condition for incidence angles of 90° (L) and 0° (R) 
 

The surface is defined in the same manner as for the specular reflection. Therefore, the scattering direction is 
defined by an angle relative to the surface normal vector. For the case where the surface is perpendicular to the 
incoming flow, the entire distribution function is reflected and scattered into the part of the velocity space domain 
that lies in the direction of the surface normal. Unlike the specular reflection, the distribution function for the diffuse 
reflection has the highest probability for a velocity located at the origin of velocity space. The total probability 
density for the inflow distribution function and the diffusely reflected distribution function are equal. When the 
angle of incidence reaches 0°, only half of the inflow distribution function is reflected at the boundary. Again, the 
total probability density for the inflow distribution is the same as the diffusely reflected distribution function. 

Maxwellian Reflection 

The Maxwellian boundary condition is a combination of specular and diffuse reflection.  It is assumed that a 
certain percentage of incident molecules undergo specular reflection. The remaining proportion of molecules 
undergoes diffuse reflection. The percentage of molecules that undergo diffuse reflection is called the 
accommodation coefficient, α. The resulting probability distribution is determined using Equation (6). The 
accommodation coefficient, α, can be adjusted to empirically match experimental data to accurately reflect 
differences in surface properties. The results of applying the Maxwellian reflection boundary condition in a two-
dimensional velocity space are shown in Figure 5.  The value of the accommodation coefficient, α, is equal to 0.5.   

 
 ( ) SpecularDiffuseMaxwellian fff αα −+= 1  (6) 

 

 
 

FIGURE 5.  Maxwellian reflection boundary condition (α = 0.5) for incidence angles of 90° (L) and 0° (R) 
 



The Maxwellian distribution, for an accommodation coefficient equal to 0.5, results in half of the specular 
reflection boundary condition and half of the diffuse reflection boundary condition being represented in the part of 
the velocity space domain located in the direction of the surface normal. For an incidence angle equal to 90°, the 
diffuse reflection component appears to be of the same magnitude as the inflow distribution function, but only half 
of the distribution is present (the half that is in the direction of the surface normal). The specular reflection 
component appears to be comprised of a complete Maxwellian distribution, but the magnitudes are one half of the 
inflow values.  The diffuse reflection probabilities become less dominant over the specular reflection probabilities as 
the angle of incidence reaches zero. These observations may change if a different accommodation coefficient is 
selected.  If either zero or one are selected, then the observations would be the same as for the specular reflection or 
the diffuse reflection, respectively. 

Adsorptive Maxwellian Reflection 

The last boundary condition is a combination of adsorption and Maxwellian reflection. A new coefficient, β, is 
introduced to represent the proportion of molecules that experience adsorption. The remaining molecules are 
assumed to experience the Maxwellian reflection, which is distributed between specular and diffuse reflections 
according to the selected accommodation coefficient, α.  The probability distribution function is determined using 
Equation (7). The results of applying the adsorptive Maxwellian boundary condition in a two-dimensional velocity 
space for various incident angles are shown in Figure 6. The two coefficients, α and β, are equal to 0.5 and 0.33, 
respectively. As a result, the probability distribution function is comprised of equal parts of adsorption, specular 
reflection, and diffuse reflection. 
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FIGURE 6.  Adsorptive Maxwellian reflection boundary condition (α = 0.5, β = 0.33) for incidence angles of 90° and 0° 
 
It is clear by examining Figure 6 that the probabilities associated with the specular reflection component are 

reduced beyond that of the Maxwellian reflection. The magnitude of the diffuse reflection component located at the 
origin of the velocity space appears unchanged. This appearance is due to the fact that the adsorptive boundary 
condition, also located at the origin of the velocity space, now comprises part of the reflected boundary condition.  It 
is important to note that the behavior noted in the preceding discussion will undoubtedly change if different values 
for α and β are chosen. 

APPLICATION OF BOUNDARY CONDITIONS TO FLOW OVER A FLAT PLATE 

The solid wall boundary conditions discussed in the preceding sections were applied to simulation of supersonic 
flow over a flat plate, at Mach 3, using a direct Boltzmann solver based on the approach of Tcheremissine [2].  
These simulations were conducted in order to make a preliminary determination regarding the effectiveness of each 
type of boundary condition in simulating the flow near a solid wall boundary. The equivalent Knudsen number is 0.5 
since the flat plate extends between 4.0 and 6.0 in the X/λ direction. A wall temperature equal to the freestream 
value was assumed for the adsorptive boundary condition. An example of the Mach number and density contours is 
shown for the diffuse reflection boundary condition in Figure 7.  The five boundary conditions can be compared by 
calculating the partial derivatives that are proportional to skin friction and heat transfer, as shown in Equation (8).  
Figure 8 presents a comparison of the skin friction and heat transfer properties along the surface of the flat plate.   
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FIGURE 7.  Mach number and density contours for diffuse reflection along a flat plate at Mach 3 

 

  
FIGURE 8.  Comparison of derivative for skin friction and heat transfer for flow along a flat plate at Mach 3 

 
As expected, the heat transfer and skin friction for the specular reflection boundary condition is zero across the 

entire surface of the flat plate.  The diffuse reflection boundary condition results in heat transfer values that are not 
too dissimilar from the specular reflection values.  However, the skin friction values are higher for diffuse reflection.  
For the Maxwellian reflection, the skin friction falls between the values obtained for specular reflection and the 
diffuse reflection.  Interestingly, the Maxwellian reflection results in absolute values of heat transfer that are higher 
than those obtained from either specular reflection or diffuse reflection.  The adsorptive boundary condition yields 
the highest skin friction values and the highest absolute heat transfer values. When combined with the Maxwellian 
reflection, the adsorptive boundary condition dominates the heat transfer process and results in a profile that is 
almost the same as pure adsorption. The adsorptive boundary condition also dominates the skin friction values, but 
to a lesser extent.  

SUMMARY 

For simulating flow over a flat plate, pure adsorption results in the highest values of skin friction and heat 
transfer.  Pure specular reflection results in the lowest values of skin friction and heat transfer.  Diffuse reflection 
results in skin friction values that fall between the adsorptive and specular reflection values. The Maxwellian 
reflection yields some flexibility in tuning the skin friction and heat transfer values across the plate.  However, 
combining the adsorptive boundary with the Maxwellian reflection enables an even greater degree of flexibility.  
This flexibility will be extraordinarily useful when attempting to match numerical simulations to experimental data. 
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