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Abstract. Direct methods for solving the generalized Boltzmann equation are advanced by simulating flow past three-
dimensional immersed bodies in diatomic nitrogen in rotational-translational non-equilibrium. The simulations are 
performed by solving the entire domain with the generalized Boltzmann equation using a solver based upon the 
conservative discrete ordinates method of Tcheremissine. Coarse and refined grid solutions are generated for three 
axisymmetric three-dimensional bodies – blunt body, bicone, and hollow flared cylinder.  The solutions are compared 
and a parallel implementation is developed to enable further levels of grid refinement. 
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INTRODUCTION 

Direct finite-difference methods for solving the Boltzmann equation have only recently seen significant 
advancements. As a result, direct solution methods for the Boltzmann equation have not advanced to the same level 
as their statistical or continuum counterparts. This paper focuses on further advancing the state of the art of direct 
methods by developing the capabilities for solving flow around 3D immersed bodies in non-equilibrium hypersonic 
flows with increasing levels of grid refinement. The advancements discussed in this paper include a parallelization 
scheme for the baseline mono-molecular model of Tcheremissine [1], computation of baseline coarse grid solutions 
for several immersed bodies (axisymmetric blunt body, bicone, and hollow-flared-cylinder), and computations of 
solutions with a higher level of grid refinement on a parallel computing platform and comparisons of fine grid 
solutions with coarse grid solutions for hypersonic rarefied flow past an axisymmetric body bathed in nitrogen with 
rotational-translation (RT) non-equilibrium.   

DEVELOPMENT AND PARALLEL IMPLEMENTATION 

In order to enhance the capabilities of the three-dimensional classical Boltzmann solver based on 
Tcheremissine’s method [1], by including capabilities for increasing levels of grid refinement to improve solution 
accuracy and the inclusion of additional internal degrees of freedom (rotational and vibrational), and the capability 
for simulating mixtures of gases, the parallelization of the three-dimensional solver was found to be a must needed 
enhancement and extension.  A parallelization scheme was developed for this purpose and implemented. 



Modifications to the Baseline 3D Generalized Boltzmann Solver 

Tcheremissine’s code was originally written to simulate a jet issuing into a vacuum. The code was modified to 
allow for the simulation of flow around immersed bodies. The grid definition was modified to define the immersed 
body geometry. The code employs a Cartesian grid whereby grid points are defined by three separate distributions 
along the X/λ, Y/λ, and Z/λ axes. As a result, resolving the surface of a curvilinear body requires a significant 
number of grid points. These extra grid points used to resolve the surface of the body also result in the generation of 
superfluous nodes near the farfield boundaries of the domain, with corresponding cells of excessively high aspect 
ratios. These consequences result in a significant increase in the memory required to execute a solution. Similar 
challenges are encountered when attempting to resolve the boundary layer near the surface of the body. 

Simulations were performed at Mach 3 and Mach 7 for several immersed body geometries.  In order to enable 
higher Mach number simulations, it is necessary to increase the expanse of the velocity space domain such that the 
majority of the distribution function is contained within the domain.  Increase in the expanse of the velocity space 
domain results in greater memory requirement in the physical space, which precluded running fine grid solutions for 
the hollow-flared-cylinder on the available computing hardware.  

Code Parallelization 

Based upon the results obtained after modifying the baseline code to simulate flow around immersed bodies, it 
became necessary to parallelize the code to enable higher levels of grid refinement. The memory requirements for a 
conventional continuum solver are primarily dependent upon the physical space grid dimensions. For direct 
numerical simulation of the Boltzmann equation, the physical space grid size is only one of the key contributing 
factors for determining the memory requirement and the corresponding computation time; the other key contributing 
factor is the velocity space grid refinement. The total number of grid points required for a physical space Cartesian 
grid is equal to the product of the number of grid points in each physical space coordinate direction, NxNyNz.  The 
total number of grid points in velocity space, also assuming a Cartesian grid, is equal to the product of the number of 
grid points in each coordinate velocity direction, NuNvNw.  As a result, the total number of grid points for a direct 
numerical simulation of the Boltzmann equation is the product of the total number of grid points in physical space 
and the total number of grid points in velocity space, NxNyNzNuNvNw. If additional degrees of freedom are considered 
(i.e. rotational and vibrational), and more than one gas specie is included, the total number of grid points required to 
define the distribution function increases by the product of the number of rotational energy levels, the number of 
vibrational energy levels, and the number of species, NRotNVibNSpe.  Therefore, the total expanse of the distribution 
function is the product of the total number of grid points, the total number of energy levels, and the total number of 
species, NxNyNzNuNvNwNRotNVibNSpe.  A problem that requires only 5000 grid points in physical space could require 
more than 550 million elements to define the distribution function. Furthermor, over five gigabytes of physical 
memory is required to store the distribution function for these 550 million elements. 

A three-dimensional physical space defined by only 5000 points is extremely coarse by any continuum grid 
generation standard. Therefore, a hybrid parallelization approach was implemented to facilitate more refined 
physical space grids in the calculations. The splitting scheme that is used to calculate the distribution function 
enables parallelization to be implemented in a rather straightforward manner. The relaxation phase of the splitting 
scheme is independent of neighboring physical space grid points. Therefore, the only portion of the splitting scheme 
that needs to be parallelized is the free molecular phase. The free molecular phase is only dependent upon the 
changes in the distribution function in physical space. Thus, the physical space domain can be separated into 
similarly sized zones and distributed to individual computational nodes on a cluster. The number of computational 
nodes in the cluster enables a proportionate increase in the number of grid points in physical space. Additionally, 
multiple cores on a single computational node can be utilized to decrease the computation time. 

A hybrid parallelization approach was utilized to parallelize the free molecular phase of the code. OpenMP was 
utilized to enable multiple cores on a single computational node to simultaneously perform computations on 
different physical space nodes. OpenMP is an application programming interface (API) specifically targeted at 
shared-memory system parallel programming. OpenMP is relatively easy to implement, only decreases computation 
time, and does not enable the increase of the total number of grid point. The Message Passing Interface (MPI) 
enables developing programs that can capitalize on the benefits of a distributed memory system. MPI is more 
difficult to implement, but is required for larger grid sizes.  MPI was used to enable multiple computational nodes on 
a computing cluster to solve different zones of the physical space computational domain in parallel. As mentioned 
previously, both OpenMP and MPI were only applied to the free molecular phase of the Boltzmann solver. 



COARSE GRID SOLUTIONS 

Three immersed axisymmetric body geometries were used to demonstrate application of the three-dimensional 
generalized Boltzmann equation (GBE) solver. These geometries include a blunt body, a bicone, and a hollow flared 
cylinder, shown in Figure 1.  Extensive experimental work has been conducted for hypersonic flow of nitrogen past 
a bicone and a hollow-flared-cylinder [2]. These geometries were chosen to facilitate eventual direct comparison of 
the Boltzmann solutions with the experimental data. All the geometries are modeled as quarter-bodies, since the 
incoming flow is at zero degree angle of attack.  The X-axis is along the centerline of the body, with reflection about 
the XY plane at Z/λ = 0 and the ZX plane at Y/λ = 0.  An inflow boundary condition was imposed in the YZ plane at 
X/λ = 0.  All the other planar boundaries of the domain were assumed to be outflow boundaries. 
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FIGURE 1.  Immersed Body Geometries – Blunt Body, Bicone, Hollow Flared Cylinder 

 
The blunt body geometry is adapted from Josyula [3]. Hypersonic flow of nitrogen past a bicone and hollow 

flared cylinder in rotational-translation non-equilibrium are benchmark test cases for which experimental data is 
available [4]. The bicone and hollow flared cylinder were adapted from Harvey [2]. Coarse grid solutions for the 
blunt body and bicone were run at Mach 3 and 7 at three different Knudsen numbers (0.01, 0.1, and 1.0).  Coarse 
grid solutions for the hollow flared cylinder were run at Mach 3 at the same Knudsen numbers. Adequately refined 
Mach 7 solutions could not be achieved on the available computing hardware due to higher memory requirements 
imposed by the expanded velocity space grid.  The adsorptive wall boundary condition was used at the body surface 
for all of the geometries. As an example of the solutions, Figures 2 - 5 present three-dimensional isometric views of 
Mach number and density contours around the blunt body at Mach 3 and Kn = 1. The views show the flow 
properties in the ZX plane at Y/λ = 0, the XY plane at Z/λ = 0, and YZ plane at X/λ = Xmax. 

By examining the contour plots for each Knudsen number, it is clear that the variation in Knudsen number has a 
direct impact on the extent of the shock wave upstream of the body.  As the Knudsen number increases (i.e. the flow 
becomes more rarefied) the shock becomes diffuse and extends further upstream of the nose of the body.  
Additionally, the density variations extend further downstream along the surface of the body past the nose. When 
Mach number increases from three to seven, the extent of the high density region of the shock wave increases.  
Additionally, it appears that the shock thickness along the stagnation line becomes slightly smaller. The variations in 
Knudsen number have the same effect for the Mach 7 solutions as for the Mach 3 solutions. It is interesting to note 
that the density decreases as the Knudsen number decreases (i.e. the flow tends toward a continuum). This decrease 
in density can be most likely attributed to the grid density near the surface of the body. 

Since the hollow-flared-cylinder has an internal flow path, the contraction ratio needs to be examined to 
determine whether the contraction ratio between the inlet and the throat will result in over-contraction and a 
subsequent un-start. The area ratio between the inlet and the throat is approximately 0.48. The contraction ratio, 
A*/A, that will result in Mach 1 at the throat is 0.24. Therefore, there is plenty of margin between the contraction 
ratio of the hollow-flared-cylinder and an area ratio that would result in over-contraction.  Examining the Kantrowitz 
self-start limit produces the same observation regarding the contraction ratio. The grid density within the internal 
flow path can have a direct impact on the behavior of the inlet. Therefore, a higher grid density for the internal flow 
path needs to be used to ensure an accurate result for the shock structure and the stagnation line properties. 

 



  
 

FIGURE 2.  Blunt Body:  3D Mach and Density Contours at Mach 3 and Kn = 1 
 
 

 
 

FIGURE 3.  Bicone: 3D Mach and Density Contours at Mach 3 and Kn = 1 
   
 

 
 

FIGURE 4.  Hollow Flared Cylinder: 3D Mach and Density Contours at Mach 3 and Kn = 1 
 



REFINED GRID SOLUTIONS 

The grid refinement was performed for the axisymmetric blunt body. The grid point distribution was roughly 
doubled in each of the coordinate directions. The following sections present the results obtained using the refined 
grid and comparison of the results obtained with coarse and refined grids. 

Flow Past a Blunt Body 

The geometry of the blunt body used for the refined grid solution is the same as that presented previously. A 
refined grid solution is generated at Mach 3 and a Knudsen number of 1.0. The adsorptive wall boundary condition 
is used for the body surface.  Figure 4 presents three-dimensional isometric views of Mach number and density 
contours around the blunt body.   

The results obtained using the refined grid present a much more smoothly defined shock wave upstream of the 
body. The primary differences are in the gradients of flow properties near the surface. It is clear from both the 
contours and the stagnation line plots that the shock structure is better defined for the refined grid solutions. The 
shock wave upstream of the body for the coarse grid solutions was smeared over a longer distance upstream of the 
body. 

 

 
FIGURE 5.  Refined Grid Blunt Body: 3D Mach and Density Contours at Mach 3 and Kn = 1 

Solution Comparison 

A converged solution on the coarse grid was obtained after approximately 1000 iterations and ten hours of run 
time on a quad-core Intel processor based machine with eight gigabytes of physical memory. A converged solution 
on the refined grid was obtained after approximately 5000 iterations and 37 days of run time on a dual quad-core 
Intel processor based machine with 72 gigabytes of physical memory.   

It can be seen that there is a difference between the coarse grid solutions and the refined grid solutions by simply 
comparing the contour plots and the stagnation streamline plots of various flow variables. The stagnation streamline 
plots clearly show that the flow properties are smeared across a larger distance in the coarse grid solutions. The 
decrease in shock thickness, and the tendency of the flow properties to approach the stagnation values, with an 
increase in the grid resolution near the nose of the body is a direct result of increasing the grid refinement upstream 
of the body. Additionally, the conclusion can be drawn that, at the current levels of grid refinement, the solutions are 
still grid dependent. Figure 6 demonstrates the impact of grid refinement on Mach number for constant lines of Z/λ 
between the stagnation streamline and the upper surface of the body. 
     Additional metrics for evaluating the impact of grid refinement are to examine the interaction of the flow along 
the surface of the immersed body. To facilitate this evaluation, estimates of proportional values for skin friction, 
pressure, and heat transfer were calculated along the top surface of the blunt body. Figure 7 presents these values for 
both the coarse grid and the refined grid solutions. Both skin friction and heat transfer are under predicted by 
approximately 75% with the coarse grid solutions when compared to the refined grid solutions. The coarse grid 
solutions also over predict the pressure coefficient by approximately 5%. Additional levels of grid refinement will 
be required in order to obtain better estimates for these parameters. 



  
FIGURE 6.  Coarse and Refined Grid Solution Comparison of Mach Number at Constant Z/λ 

  
FIGURE 7.  Parameters Comparing Fluid/Body Interaction along the Upper Surface of the Blunt Body 

SUMMARY 

 The two main approaches for obtaining more refined, less grid dependent solutions, are to implement a more 
sophisticated grid generation scheme and to improve the numerical approach used in the relaxation phase of the 
Boltzmann solver. Since the Boltzmann equation is presented strictly in terms of an orthogonal coordinate system, 
and is not conformally mapped, local adaptive mesh refinement could be used to improve both resolution of the 
immersed body surface and of high gradient flow field structures (i.e. shock waves).  The current parallelization 
approach only addresses the free molecular phase. The numerical scheme currently used in the relaxation phase is 
not well conditioned to take advantage of parallelization. Therefore, a restructuring of the numerical approach used 
in the relaxation phase could enable that phase of the computation cycle to take advantage of parallelization. 
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