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Abstract. GPU-accelerated computing of the Boltzmann collision integral is studied using deterministic method with 
piecewise approximation of the velocity distribution function and analytical integration over collision impact parameters. 
The acceleration of 40 times is achieved compared to CPU calculations for a 3D problem of collisional relaxation of bi-
Maxwellian velocity distribution.  
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INTRODUCTION  

Recent advancements in the development of Graphics Processing Units (GPU) make it possible to achieve 
teraflop performance on a single desktop computer [1]. To achieve peak performance, special numerical algorithms 
for GPU architecture should be developed to divide the problem into multiple threads executed in parallel. The 
acceleration of 30-40 times by GPU computations is reported in [2] for the evaluation of the Boltzmann collision 
integral with semi-regular methods. Frezzotti et al. [3, 4] have shown that direct solution of the Boltzmann equation 
(with both the Bhatnagar-Gross-Krook-Welander (BGKW) model and the hard sphere collision integral) can be 
easily divided into threads to produce more than 2 orders of magnitude speedup on GPU versus CPU. 

In the present paper, the GPU-accelerated computing (with NVIDIA cards and the high level CUDA 
programming language) is studied for computing the Boltzmann collision integral with deterministic (regular) 
method using a piecewise approximation for the velocity distribution function and analytical integration over impact 
parameters (see, e.g. [5]). The work utilizes our previous experience on parallelization in velocity space for the 
deterministic method described in [6] and the development of different parallel algorithms for direct Boltzmann 
solvers [7, 8].  

We describe special GPU algorithms for solving the Boltzmann kinetic equation by the deterministic (regular) 
method. This method could be particularly attractive for unsteady problems, problems with low gas velocities (such 
as flows in MEMS) and flows at small Knudsen numbers.  A regular grid in velocity space is used with cubic cells in 
velocity space. The splitting procedure reduces the problem to advection in physical space, and collisional relaxation 
in velocity space. This paper focuses on the relaxation part of the problem. The GPU-methods for solving the 
advection part have already been described in [2-4].  

THE BOLTZMANN EQUATION AND THE DETERMINISTIC METHOD 

The Boltzmann kinetic equation is written in the usual form using standard notations: 
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Here f is the distribution function, I is the collision integral written for a model of hard spheres (or VHS). The 
deterministic method [5, 6] for calculation of the collision integral is briefly described below. A uniform rectangular 
3D computational mesh is introduced in velocity space with cells x y z     . The computational domain is 



chosen in such a way that the distribution function is small beyond the domain. The cells are numbered by a 3D 

index  , ,x y zi i ii . The location of the center of a cell X i  is defined in the following manner: 

 1 2i MIN i         , , ,x y z  . As the computational domain is finite the 3D index can be easily 
converted into a 1D index. A piecewise constant approximation of the distribution function is adopted, i.e. the 
distribution function is assumed to be constant inside of each cell. This approximation of the distribution function 
can be written as follows: 
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The collision integral is computed in the center of each cell X i : 
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The integration over parameter 1ξ  in (2) is performed numerically using the centered rectangular quadrature formula 
on the cells of the computational mesh: 
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In (3) x y z      ξ , g  i j i jξ ξ . Substituting (1) into (3) results in: 
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Equation (4) can be rewritten in the following manner: 
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The coefficients Aik l  and Bi j  depend only on the velocity mesh and have the form: 
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In [5, 6] it is shown that the coefficients Aik l  and Bi j  can be computed analytically for the collision model of 
hard spheres. The practical restriction for the direct application of Eq. (5) in numerical simulations consists of the 
huge size of the array Aik l . To overcome this limitation, the equation (6) should be used. As the velocities ξ , 1ξ  

and ξ , 1ξ  are linked by the momentum conservation law, the indices i, j, k and  l are not independent: 

  i j k l , and a new index n can be introduced instead of 2 indices k and  l in such a way that all components of 
3D indices k and  l to be integer:   2  k i j n ,   2  l i j n . Thus, instead of summation over indices k and 
l in (5), a summation over indices j and n can be used: 
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The coefficients , ,Ai j n  are computed as follows: 
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It can be noted that , , , ,A A   i j n i m j m n  for the uniform computational mesh, and all the velocities in the equation 

(9) for , ,A  i m j m n  can be transformed to the velocities in the equation for , ,Ai j n  by the shift of the coordinate 



system on  m ξ . So the coefficients , ,Ai j n  depends on n and on the difference i–j: , , ,
ˆA A  i j n i j n , and the size 

of the array , ,Ai j n  can be reduced the size of velocity mesh times. The size of array Bi j  can also be reduced in 

similar manner: ˆB B i j i j . Finally, the collision integral used in our computations has the following form: 
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The fundamental physical property of the collision integral is the existence of collision invariants. These 
invariants must be conserved in the numerical computation of the collision integral: 
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In order to maintain the collision invariants (11), the polynomial conservative correction proposed by Aristov and 
Tcheremissine [9] is used: 
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The function (12) is substituted instead of fi  in front of the second summation in (10): 
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Substituting the collision integral (13) into (11) results in the system of 5 linear equations for 5 unknowns 0a , xa , 

ya , za  and 2a  which can be easily solved. 
The advantage of the considered method is the absence of statistical noise, which arises when semi-regular 

methods (Monte-Carlo procedures or Korobov’s sequences) are used. A serious drawback of the method is its high 
computational cost (about N8/3 operations, where N is the number of cells in velocity space). It is expected that the 
application of GPU can drastically accelerate these computations.  

GPU COMPUTING AND CUDA IMPLEMENTATION 

NVIDIA CUDA technology was taken as a tool to implement deterministic Boltzmann solver on GPU. In order 
to achieve good performance on a GPU the code must be well parallelized in a fashion similar to the traditional 
multi-CPU computing. Unfortunately, GPU architecture and CUDA technology impose additional requirements to 
the numerical algorithms making the process of effective code development quite different from the traditional 
parallel programming and introducing new “degrees of freedom” for tuning specific applications. These 
requirements are briefly discussed in the following paragraphs. 

A CUDA-enabled device has a set of streaming multiprocessors (e.g. 30 multiprocessors for NVIDIA GeForce 
GTX 280). Each multiprocessor can support up to 1024 active threads. The smallest executable unit of parallelism 
on a device is called warp and consists of 32 threads. Within one warp multiple execution paths must be avoided, 
because branching leads to serialization of the code for a diverging path. Besides warp, a thread block must be 
considered. A thread block is a set of threads executed on one multiprocessor sharing some resources. So when 
developing the CUDA algorithm, a programmer must think not only in terms of threads but also in terms of warps 
and thread blocks. 

Any device has access to several types of memory. One must distinguish a slow DRAM memory (global 
memory) and a fast on-chip memory (shared memory and registers). Global memory has high access latency (more 
than 400 clock cycles); otherwise shared memory and registers latency is 2 orders lower. The peak performance of 
operations with global memory is achieved when the memory is accessed in a coalesced manner (the threads of a 
warp access sequentially aligned memory blocks). The shared memory size is small – 16 Kb per thread block, while 
global memory size can be up to 1 Gb. One of the challenges in GPU programming is to replace uncoalesced and 
redundant accesses to global memory by accesses to shared memory when it is possible. 

It has been recently shown (see [2]-[4]) that the use of NVIDIA CUDA technology can provide more than 2 
orders speedup for Boltzmann solvers. The threads in these papers correspond to points in physical space. This 
approach suits well for GPU computing of collision integral because the same code is executed for different threads. 
The advection of the distribution function in physical space is also well processed by GPUs. 



In the present paper we consider the possibility to compute the relaxation problem on GPUs. This problem is a 
fundamental part of any Boltzmann solver, so efficient GPU relaxation code could be a part of more complex solver. 
Although the relaxation problem seems less complex than solution of spatially inhomogeneous Boltzmann equation, 
it is not as well parallelized because the physical coordinate cannot be used as a thread ID parameter for obtaining 
the same code for a warp. 

At first sight, selecting threads equivalent to points in velocity space seems to be natural for GPU computations 
of the collision integral by the deterministic method. Unfortunately, analysis shows that direct application of this 
approach does not provide performance benefits. The reasons are the unstructured access to arrays of coefficients 
which are stored in global memory and multiple execution paths. 

The algorithm of collision integral computations has been optimized for the GPU computations in the following 
manner. In order to reduce accesses to global memory thread blocks were organized in such a way that each thread 
block processed the part of the collision integral with the first components of the 3D indices i, j and n in (10) being 
constant inside a thread block. This results in that the first components of all 3D indices in (10) being constant inside 
a thread block. The part of the distribution function with a fixed first component of index is stored in shared 
memory. 

The CUDA code of a kernel for computation of the part of the collision integral, corresponding to collision 
frequency (the last sum in (10)) is presented in Listing 1.  This code is created for the simplest case of a rectangular 
3D computational domain where the range of points in each coordinate is constant and independent of other 
coordinates. The kernel writes the results to a buffer. The buffer is large enough to guarantee that no writing conflict 
will happen. 

  

 
Listing 1. CUDA kernel for computations of the collision frequency. 
 

The kernel for computing the inverse collision integral is presented in Listing 2. It is the main part of the code, 
because computations of the inverse collision integral by the deterministic method take more than 99% of time. The 
structure of the code is similar to that of Listing 1. One should mention that the shared memory buffer is updated 

__global__ void compute_frequency (float * f, float * b, float * frequency_buffer) 
{ 
  short int i_x, i_y, i_z, j_x, j_y, j_z, m_x, m_y, m_z, index; 
  __shared__ float f_shared[N_YZ]; 
  __shared__ float b_shared[N_YZ]; 
  __shared__ float integral_shared[N_YZ]; 
 
  i_x = blockIdx.x; //first components of indices are equivalent to block ID 
  j_x = blockIdx.y; 
 
  for (index = threadIdx.x; index < N_YZ; index+= blockDim.x)    // copy the distribution 
    f_shared[index] = f[j_x * N_YZ + index];                     // function to shared memory 
 
  m_x = (i_x > j_x) ? i_x – j_x : j_x – i_x; // abs (i – j) 
 
  for (index = threadIdx.x; index < N_YZ; index+= blockDim.x)   // copy the array of coeffi- 
    b_shared[index] = b[m_x * N_YZ + index];                    // cients to shared memory 
 
  __syncthreads (); 
 
  for (index = threadIdx.x; index < N_YZ; index+= blockDim.x) { // thread ID corresponds to 
    int index1;                                                 // external index i 
    integral_shared[index] = 0; 
    i_y = y_index (index);   
    i_z = z_index (index); 
    for (index1 = 0; index1 < N_YZ; index1++) {   // inside a thread summation on j is done 
      j_y = y_index (index1);   
      j_z = z_index (index1); 
 
      m_y = i_y > j_y ? i_y – j_y : j_y – i_y; 
      m_z = i_z > j_z ? i_z – j_z : j_z – i_z; 
      int m_index = get_m_index (m_y, m_z);       //get 1 index from 2 components 
 
      integral_shared[index] += b_shared[m_index] * f_shared[index1]; 
    } 
    frequency_buffer[(j_x + i_x * N_X) * N_YZ + index] = //store results to global memory 
      integral_shared[index]; 
  } 
} 



twice during the internal loop. This is due to the fact that the components of the index n could be both positive and 
negative. The results are stored in a global memory buffer of a size large enough to avoid memory writing conflicts.  
 

 
Listing 2. CUDA kernel for computing the inverse collision integral. 

__global__ void compute_inverse_collision_integral (float * f, float * a,  
                                                    float * inverse_integral_buf) 
{ 
  short int i_x, i_y, i_z, j_x, j_y, j_z, n_x, n_y, n_z, m_x, m_y, m_z, index; 
  short int k_x, k_y, k_z, l_x, l_y, l_z; 
  __shared__ float f1_shared[N_YZ]; 
  __shared__ float f2_shared[N_YZ]; 
  __shared__ float a_shared[N_YZ]; 
  __shared__ float integral_shared[N_YZ]; 
 
  j_x = blockIdx.x % N_X; //first components of indices are equivalent computed from block ID 
  i_x = blockIdx.y; 
  n_x = (blockIdx.x / N_X) << 1 | ((i_x + j_x) & 1); 
  k_x = (i_x + j_x + n_x) >> 1;  l_x = (i_x + j_x - n_x) >> 1; 
 
  for (index = threadIdx.x; index < N_YZ; index+= blockDim.x)    // copy the distribution 
    f1_shared[index] = f[k_x * N_YZ + index];                    // function to shared memory 
  for (index = threadIdx.x; index < N_YZ; index+= blockDim.x)     
    f2_shared[index] = f[l_x * N_YZ + index];                     
 
  for (index = threadIdx.x; index < N_YZ; index+= blockDim.x) // initialization of shared 
    integral_shared[index] = 0.0f;    // memory buffer for computing the collision integral 
 
  m_x = (i_x > j_x) ? i_x – j_x : j_x – i_x; // abs (i – j) 
 
  __syncthreads (); 
 
  for (index = 0; index < N_YZ; index++) { // summation on n loop 
    int index1, i_index, k_index, l_index;                             
    n_y = ny_index (index);   
    n_z = nz_index (index); 
 
    for (index1 = threadIdx.x; index1 < N_YZ; index1 += blockDim.x) // copy array a to shared  
      a_shared[threadIdx.x] = a[get_index_in_a (m_x, n_x, index, threadIdx.x)]; // memory 
 
    for (i_index = threadIdx.x; i_index < N_YZ; i_index += blockDim.x) { // thread ID is  
      i_y = y_index (i_index); // defines the point i in which collision integral is computed 
      i_z = z_index (i_index); 
 
      for (j_y = (n_y | i_y) & 1; j_y < N_Y; j_y += 2) //the sum n_ + i_ + j_ must be even 
       for (j_z = (n_z | i_z) & 1; j_z < N_Z; j_z += 2) { // summation on j loop 
        m_y = i_y > j_y ? i_y – j_y : j_y – i_y; 
        m_z = i_z > j_z ? i_z – j_z : j_z – i_z; 
        int m_index = get_m_index (m_y, m_z);       //get 1 index from 2 components 
 
        k_y = (i_y + j_y + n_y) >> 1; // the indices  
        l_y = (i_y + j_y - n_y) >> 1; // of post-collision 
        k_z = (i_z + j_z + n_z) >> 1; // velocities 
        l_z = (i_z + j_z - n_z) >> 1; 
         
        k_index = get_1D_index_from_y_and_z (k_y, k_z);  
        l_index = get_1D_index_from_y_and_z (l_y, l_z);  
        integral_shared[i_index] += a_shared[m_index] *  
          (f1_shared[k_index] * f2_shared[l_index] + // accumulating the collision integral 
           f1_shared[l_index] * f2_shared[k_index]); //to shared memory buffer 
 
        k_index = get_1D_index_from_y_and_z (l_y, k_z);  
        l_index = get_1D_index_from_y_and_z (k_y, l_z);  
        integral_shared[i_index] += a_shared[m_index] *  
          (f1_shared[k_index] * f2_shared[l_index] + // accumulating the collision integral 
           f1_shared[l_index] * f2_shared[k_index]); //to shared memory buffer 
      } 
    } 
  } 
  for (index = threadIdx.x; index < N_YZ; index+= blockDim.x)  
    inverse_integral_buf[(i_x + blockIdx.x * N_X) * N_YZ + index] =  
      integral_shared[index];  // copy the results from shared memory to global memory   
} 



After the kernels have completed their work the data from buffers are collected using a simple kernel which sums 
the parts of the buffer corresponding to the same velocity points. Then the conservative correction procedure (11)-
(13) is executed. The moments of the collision integral, which are necessary for the conservative correction are 
computed by the kernel. The linear system for the 5 unknowns a0, ax, ay, az, and a2 is solved in a serial manner. The 
final value of the collision integral is obtained with the formula (13) by a kernel, which corrects the collision 
integral. 

The results of computations with the developed code with the use of NVIDIA GeForce GTX 295 GPU show the 
40 times speedup for the computational mesh 20x20x20 with respect to the CPU version of the program executed on 
Intel Core 2 3GHz processor. This shows that the speedup of the proposed method is not as great as in the papers 
[2]-[4] but nevertheless the GPU in this case are several times more efficient than the same price CPU computing. 

SOLUTIONS OF TEST PROBLEMS 

Collisional relaxation of a bi-Maxwellian distribution was studied to explore the GPU acceleration process. The 
initial distribution is sum of 2 Maxwellians with different mean velocities: f=exp{-(ξ-u1)2}+exp{-(ξ-u2)2}, u1.=(1.75, 
0.25, 0), u2.=(-1.25, 0.25, 0). Nondimensional Boltzmann equation is considered with the unit factor in front of the 
collision integral and b=1. The temporal evolution of the velocity distribution function during the relaxation is 
presented in Fig. 1. The time step is selected automatically equal to a half of inverse collision frequency. The left 
plot shows the evolution of the distribution function in the cross-section ξy=0.25, ξz=0, the right plot corresponds to 
the cross-section ξx=0.25, ξz=0. The numerical error of collision integral approximation is checked for Maxwell 
distribution functions for inverse and direct collision integrals separately. The difference of numerical and analytical 
values is equal to 0.5%. As the relaxation time is about 10 the error of the solution is about 5% during relaxation. 

          
FIGURE 1. Relaxation problem. The evolution of the distribution function. 
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