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Abstract. We investigate properties of a previously proposed discrete kinetic systemfor the numerical simulation of gas flows
on the basis of the Boltzmann equation. On one hand, these models are well-suited for qualitative and quantitative studies in a
variety of situations. On the other hand, it is necessary to know about certain features of such schemes. We discuss limitations
as well as extensions of the Lattice Group Model.
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LATTICE GROUP MODELS

In [1] we have introduced a discrete kinetic model (Lattice Group Model, LGM) based on the automorphism group of
an integer lattice and have presented first numerical results. The main intention behind the derivation of these systems
was to find a construction replacing the inner integral of theBoltzmann collision operator (which is the integration over
all possible outcomes of a two-particle collision) with an appropriate sum. The theoretical framework has meanwhile
been worked out and published in [2], including a detailed discrete theory along the lines of classical kinetic theory.
Here, we discuss the LGM on the most convenient lattice for a discretized 3D velocity space.

The socalledfcc-lattice (face centered cubiclattice, see [3]) is defined as

V = {(k, l ,m) ∈ Z3 : k+ l +meven} (1)

and represents the discretized velocity space. The superset C = Z3 represents the set of all center points between
colliding particles. In the LGM, for any pair(c,v) ∈ C ×V , the pair(c+ (v− c),c− (v− c)) lies in V ×V and
represents a velocity pair undergoing collisions. Denote by O the orthonormal group ofV resp.C i.e. the set of all
reflections and rotations around zero leavingV resp.C invariant.O contains 48 elements. The discrete homogeneous
Boltzmann equation reads

∂t f (v) = ∑
c∈C

∑
o∈O

γo[ f (c+o(v−c)) f (c−o(v−c))− f (v) f (c− (v−c))] =: J[ f ](v). (2)

The weak formulation ofJ[ f ] is

〈J[ f ],Φ〉 = ∑
c∈C

∑
w

∑
o∈O

γo f (c+w) f (c−w) · [Φ(c+ow)−Φ(c+w)], (3)

whereΦ is an arbitrary test function onV (with compact support), and〈., .〉 is the usual scalar product in lRV . The
second sum extends over allw = v−c∈ C such thatc+w∈ V .

Finitekinetic models are obtained replacingV with its intersection with the ballBR(0) around zero with radiusR,

VR = V ∩BR(0). (4)

In this case the first sum in (2) is restricted to all thosec∈ C for which the discrete sphere

Sc,v = c+O(v−c) ⊂ V (5)

is contained inVR. For some integer valuesR2, Table 1 contains the sizes ofVR and the numbers|SR| of discrete
spheres contained inVR. (These latter numbers correspond to the numerical effort to calculate the collision operator.)
The size of choice in numerical calculations depends mainlyon the Knudsen numbersKn. ForKn≪ 1, R2 = 6 might
be a good choice. For larger Knudsen numbers, larger systemshave to be chosen. We are going to discuss this in the
following.



TABLE 1. Size of velocity space

R2 4 6 10 16 20 30
|VR| 19 43 79 141 201 369
|SR| 8 23 85 212 421 1194

SCALING
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FIGURE 1. Maxwellian on finite grid, (a), (b)T low; (c), (d)T high.

An LGM with |VR| velocities contains integer velocities up to the limiting radius R. If we want to represent
Maxwellians exp(−|v|2/2ξ ) with varying values ofξ on the finite grid we encounter two types of errors. Figure 1
illustrates this (with a square cut of the grid rather than a circular one). Thediscretization errorEdisc decays with
increasingξ and vanishes forξ → ∞ since the variations of the Maxwellians between neighboring grid points become
small. On the contrary, thetruncation errorEtrun which is due to the finiteness ofR, increases. There is an optimal value
of ξ for which the sum of the errors becomes minimal. This situation was tested in the heat layer problem described
in [4]. We considered an Argon gas between parallel walls with temperatures of 223.15K and 323.15K at the Knudsen
numberKn = 0.027. The scaling problem consisted in choosing an appropriate valueξ representing the Maxwellian
for the mean temperatureTm = 273.15K,
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FIGURE 2. Discretization and truncation errors.

For the simulation we used the 201-velocity model (R2 = 20). As an error indicator we measured the heat fluxq. It
turned out that the errors can with high precision be described as

Edisc = α1 ·ξ−3 +α2 ·ξ−6, Etrun = β1 ·ξ 3 +β2 ·ξ 6.



Figure 2 shows the relative errors.|Edisc|+ |Etrun| takes its minimum at some valueξ ≈ 1 with a relative error
of approximately 12%. Since LGM calculations are free of fluctuations, this error can be efficiently reduced via
interpolation techniques.

SYMMETRIES, ROTATIONAL FLOWS
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FIGURE 3. Planevz = 0, (a) cart., (b) pile.

The fcc model exhibits different rotational symmetries depending on the rotation axis. E.g. there is a 90◦ rotational
symmetry when rotating around the z-axis and a 120◦ symmetry (resp. a 60◦ symmetry in simplified cases) rotating
around the axis(1,1,1)T . We call the velocity space as given in (1) thecartesian arrangement. If we transform the
velocity space in such a way that the axis(1,1,1)T becomes the z-axis, the velocity points are the same as the set of
center and contact points of the densest sphere packing of a pile of fruit. This velocity set is called thepile arrangement.
Figure 3 shows the cuts of the velocity sets with the planevz = 0 in the cartesian (a) and the pile (b) arrangement. The
choice of the arrangement may be important since the 90◦ symmetry of the velocity space may produce artefacts when
coupled with 90◦ angles in position space. We demonstrate this in the following example.
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FIGURE 4. Boundary driven flow, (a)|V |R = 43,cart., (b) |V |R = 43,pile,(c) |V |R = 201,cart., (d) |V |R = 201,
pile.

Consider a spatially 2D flow in a quadratic box with boundaries which impose a momentum in tangential direction
(like moving boundaries) in order to generate a rotational flow. In the cartesian arrangement, small systems show the
strange behaviour of almost constant axiparallel flow with sharp discontinuities in the diagonals. The upper right
quarter of the flow of a 43-velocity model is shown in Fig. 4 (a). The discontinuities in the diagonals are only
slightly smoothed when choosing larger models (see Fig. 4 (c) for the 201-velocity model). When applying the pile
arrangement, the flow in the interior approaches a rotational flow. In Fig. 4 (b), the flow of the 43-velocity system
displays 90◦ symmetry close to the boundaries forced by the wall interaction. Close to the center, the flow approaches
a hexagonal symmetry. Figure 4 (d) shows the flow of the 201-velocity system in the pile arrangement which exhibits
a good approximation of a rotational flow in the center.



Rotational flows in 90◦ spatial arrangements occur in the case of a Knudsen pump in the setting described in
[5]. This concerns a plane channel with periodically arranged rectangular ditches. The wall temperature profile
is continuous and decreases (resp. increases) linearly inside (resp. outside) the ditches. Temperature gradients at
moderate to large Knudsen numbers induce flows in direction of the gradient (this is the socalledthermal creep
flow). In the above arrangement we get a one-sided flow through thechannel, an effect calledKnudsen pump. The
setting in [5] considers temperature variations from a minimumT0 to the maximum 3T0. Due to the large temperature
variations, the system used for the numerical simulation should not be too small. We applied the 201-velocity model
in the pile arrangement. Figure 5 (a) shows the temperature isolines at a Knudsen numberKn = 0.16; these are in
good qualitative agreement with the results of Monte Carlo simulations presented in [5, Case 1]. In Fig. 5 (b) we show
details of the flow field.

(a) (b)

FIGURE 5. Knudsen pump, (a) temperature isolines, (b) flow field.

We have also calculated the net flux through the channel depending on the Knudsen number. In agreement with
[5] we find the flow growing with the Knudsen number for small values ofKn and decaying for larger values. In
the neighborhood of the maximum, convergence to the steady state is extremely slow. So we used extrapolation
techniques for estimates of the fluxes. Therefore we can at present give only qualitative results concerning the relation
Knudsen number versus flow. Techniques speeding up convergence have for example been presented in [6]. However,
these have not yet been implemented for the LGM systems.

FIGURE 6. Knudsen pump, flux vs. Knudsen number.

BINARY MIXTURES

In a series of numerical experiments we studied an evaporation-condensation problem investigated in [7]. It concerns
a binary mixture of two mechanically identical species, oneof which (species A) interacts with the walls via



condensation and evaporation, while the other one (species B) is completely reflected. In [7] it was proven that in
the fluid dynamic limit species B forms a boundary layer of macroscopic thickness prohibiting any flow of species A
through the wall (a phenomenon termed as “ghost effect”).

For the numerical simulation one has to cope with an extremely low convergence to the steady state for small
Knudsen numbers (due to the small flow velocity). Like in the Knudsen pump case we take advantage of extrapolation
techniques which are possible in the purely deterministic case. Calculations with the 141 velocity model confirmed
the above result. We applied the LGM model to the discrete system of kinetic equations for a gas mixture. Figure 7 (a)
shows the boundary layer of species B (solid line) close to the fluid dynamic limit, the density of species A (dashed
line) and the sum of both densities (dotted line). Figure 7 (b) displays the mass flow versus the Knudsen number
proving the linear decay forKn→ 0.

The above problem can be attacked in an alternative way. A binary system of two mechanically identical species
can be modeled with LGM within a single system as we will shortly indicate. Rather than choosingV =: V+ as in
formula (1), we could have derived the same model based on

V− = {(k, l ,m) ∈ Z3 : k+ l +modd} (6)

(with the same setC of center points). The unionV+ ∪V− leads to a system with no interaction of velocity pairs in
V+×V−. However, we can extendC in such a way that these interactions are possible, e.g. by extendingC by the set

Cmix = Z3 +(0.5,0.5,0.5)T .

The new system(Cmix,V+ ∪V−) has in addition to the physical convervation laws mass, momenta and energy the
conservation of

ρ+ = ∑
k+l+m even

f (k, l ,m) and ρ− = ∑
k+l+m odd

f (k, l ,m).

Thus the even and odd indices may be used to represent two different interacting species.

(a) (b)

FIGURE 7. Evaporation condensation problem, (a) distributions, (b)flow field vs. Knudsen number.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

We have demonstrated that LGM’s provide a powerful tool for the numerical simulation of rarefied gas flows –
provided one takes into account a few specific features of such systems. E.g., schemes of small or modest size
encounter discretization and truncation errors. However,since these models are free of random fluctuations, there
is a good chance to eliminate these effects via extrapolation techniques.



As yet the implemented version is preliminary. In particular there is a need for features accelerating the approach to
steady state solutions. This will be a task for the near future.

LGM’s are not intended to replace well-established numerical simulation tools like Monte Carlo systems. E.g. there
is a number of real gas effects which are not easy to implementin LGM’s. However, LGM’s present an alternative
view on rarefied gas flows and may be useful in a number of situations.

We want to point out that a Monte Carlo version of an LGM is readily established by constructing a stochastic
collision operator. To this end we replace the inner sum of (3), ∑o∈O γo f (c+ w) f (c−w) ·Φ(c+ ow) with the term
γ f (c+w) f (c−w) ·Φ(c+orw) with or ∈ O being randomly chosen according to the probability

P(or) = γor /γ, γ = ∑
o∈O

γo. (7)

In the numerical simulation this means that rather than redistributing the pre-collisional amountγ f (v) f (c− (v− c))
over the whole discrete ballSc,v, we pass it over to one single randomly chosen pair, similarly as it is done in DSMC
calculations. Let us denote the corresponding random collision operator byJstoch[ f ]. An appealing fact is that in our
model we can adjust stochasticity to any amount we wish by switching to the convex combination

λJstoch[ f ]+ (1−λ )J[ f ], λ ∈ [0,1]. (8)

This enables us to investigate the influence of stochasticity in numerical MC schemes. Furthermore, this model may
help to observe the establishment of flow instabilities. First simulation results promise interesting insights into the role
of randomness in physical and numerical systems. This will establish a new focus of research for the near future.
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