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Abstract. We investigate properties of a previously proposed discrete kinetic systéne numerical simulation of gas flows
on the basis of the Boltzmann equation. On one hand, these models asitedlfor qualitative and quantitative studies in a
variety of situations. On the other hand, it is necessary to know abdatrcésatures of such schemes. We discuss limitations
as well as extensions of the Lattice Group Model.
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LATTICE GROUP MODELS

In [1] we have introduced a discrete kinetic modedftice Group ModelLGM) based on the automorphism group of
an integer lattice and have presented first numerical esttie main intention behind the derivation of these systems
was to find a construction replacing the inner integral oBblzmann collision operator (which is the integration ove
all possible outcomes of a two-particle collision) with gapeopriate sum. The theoretical framework has meanwhile
been worked out and published in [2], including a detailestidite theory along the lines of classical kinetic theory.
Here, we discuss the LGM on the most convenient lattice fasereltized 3D velocity space.

The socalledcc-lattice (face centered cublattice, see [3]) is defined as

¥ ={(k|,m) € Z*:k+|+meven} 1)

and represents the discretized velocity space. The supérseZ® represents the set of all center points between
colliding particles. In the LGM, for any paifc,v) € € x ¥, the pair(c+ (v—c),c— (v—c)) liesin ¥ x ¥ and
represents a velocity pair undergoing collisions. Dengt&@lthe orthonormal group of” resp.%’ i.e. the set of all
reflections and rotations around zero leavitigesp.% invariant.& contains 48 elements. The discrete homogeneous
Boltzmann equation reads

af(v)=>3 > wlf(cto(v—c))f(c—o(v—c)) - f(v)f(c—(v—c))] = I[f](v). (2)

cev oel

The weak formulation od[f] is

QIL®) =3 5 > wflc+w)f(c—w):[P(c+ow) - D(c+w)], (3)

ceC W oeld

where® is an arbitrary test function o (with compact support), and, .) is the usual scalar product in’R The
second sum extends overall=v—c € % such that+we 7.
Finitekinetic models are obtained replacitfgwith its intersection with the baBg(0) around zero with radiuR,

Yr="7 NBg(0). (4)
In this case the first sum in (2) is restricted to all those% for which the discrete sphere
Sv=Cc+O(—-c)C¥ (5)

is contained inYk. For some integer valueR?, Table 1 contains the sizes @k and the numbersk| of discrete
spheres contained i¥k. (These latter numbers correspond to the numerical efiavékculate the collision operator.)
The size of choice in numerical calculations depends mainlthe Knudsen numbekén. ForKn < 1, R? = 6 might

be a good choice. For larger Knudsen numbers, larger systamesto be chosen. We are going to discuss this in the
following.



TABLE 1. Size of velocity space

R2 4 6 10 16 20 30
|%r| | 19 43 79 141 201 369
IS/ | 8 23 85 212 421 1194
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FIGURE 1. Maxwellian on finite grid, (a), (bY low; (c), (d) T high.

An LGM with |¥g| velocities contains integer velocities up to the limitiredius R If we want to represent
Maxwellians exp—|v|2/2&) with varying values of on the finite grid we encounter two types of errors. Figure 1
illustrates this (with a square cut of the grid rather tharireutar one). Thediscretization erroEgisc decays with
increasingg and vanishes fof — o since the variations of the Maxwellians between neighlgpgind points become
small. On the contrary, thieuncation erroE, which is due to the finiteness Bf increases. There is an optimal value
of & for which the sum of the errors becomes minimal. This sitiratvas tested in the heat layer problem described
in [4]. We considered an Argon gas between parallel wallb teimperatures of 22B5K and 3231L5K at the Knudsen
numberKn = 0.027. The scaling problem consisted in choosing an apprepvaueé representing the Maxwellian
for the mean temperatuiig, = 273 15K,
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FIGURE 2. Discretization and truncation errors.

For the simulation we used the 201-velocity mod@d & 20). As an error indicator we measured the heat fuit
turned out that the errors can with high precision be desdrés

Edisc:al'f_3+a2‘5_6, Etrun:Bl'53+B2'EG-



Figure 2 shows the relative erron&gisc| + |Etrun| takes its minimum at some valug~ 1 with a relative error
of approximately 12%. Since LGM calculations are free of tihations, this error can be efficiently reduced via
interpolation techniques.

SYMMETRIES, ROTATIONAL FLOWS

(a) (b)

FIGURE 3. Planev; =0, (a) cart., (b) pile.

The fcc model exhibits different rotational symmetries elggiing on the rotation axis. E.g. there is & 96tational
symmetry when rotating around the z-axis and a°18@nmetry (resp. a 60symmetry in simplified cases) rotating
around the axi1,1,1)". We call the velocity space as given in (1) thartesian arrangemerit we transform the
velocity space in such a way that the akls1,1)" becomes the z-axis, the velocity points are the same as tloé se
center and contact points of the densest sphere packinglefa fruit. This velocity set is called thgile arrangement
Figure 3 shows the cuts of the velocity sets with the plgne 0 in the cartesian (a) and the pile (b) arrangement. The
choice of the arrangement may be important since thes@metry of the velocity space may produce artefacts when
coupled with 90 angles in position space. We demonstrate this in the fofigweixample.
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FIGURE 4. Boundary driven flow, (a)¥|r = 43, cart, (b) |¥'|r = 43, pile,(c) | ¥ |r = 201, cart, (d) | ¥ |r = 201,
pile.

Consider a spatially 2D flow in a quadratic box with boundavidich impose a momentum in tangential direction
(like moving boundaries) in order to generate a rotatiomaV.fin the cartesian arrangement, small systems show the
strange behaviour of almost constant axiparallel flow whhrp discontinuities in the diagonals. The upper right
guarter of the flow of a 43-velocity model is shown in Fig. 4. (@he discontinuities in the diagonals are only
slightly smoothed when choosing larger models (see Fig) fo(che 201-velocity model). When applying the pile
arrangement, the flow in the interior approaches a rotatitma. In Fig. 4 (b), the flow of the 43-velocity system
displays 90 symmetry close to the boundaries forced by the wall intésacClose to the center, the flow approaches
a hexagonal symmetry. Figure 4 (d) shows the flow of the 20deitg system in the pile arrangement which exhibits
a good approximation of a rotational flow in the center.



Rotational flows in 90 spatial arrangements occur in the case of a Knudsen pumpeisetiing described in
[5]. This concerns a plane channel with periodically aremhgectangular ditches. The wall temperature profile
is continuous and decreases (resp. increases) lineaiteifieesp. outside) the ditches. Temperature gradients at
moderate to large Knudsen numbers induce flows in directfothe gradient (this is the socallethermal creep
flow). In the above arrangement we get a one-sided flow throughttaenel, an effect calleRnudsen pumpThe
setting in [5] considers temperature variations from a mimn Ty to the maximum ¥,. Due to the large temperature
variations, the system used for the numerical simulati@mukhnot be too small. We applied the 201-velocity model
in the pile arrangement. Figure 5 (a) shows the temperasoiseés at a Knudsen numbkn = 0.16; these are in
good qualitative agreement with the results of Monte Cartaufations presented in [5, Case 1]. In Fig. 5 (b) we show

details of the flow field.
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FIGURE 5. Knudsen pump, (a) temperature isolines, (b) flow field.

We have also calculated the net flux through the channel digpgion the Knudsen number. In agreement with
[5] we find the flow growing with the Knudsen number for smallues of Kn and decaying for larger values. In
the neighborhood of the maximum, convergence to the stetady & extremely slow. So we used extrapolation
techniques for estimates of the fluxes. Therefore we careaept give only qualitative results concerning the retatio
Knudsen number versus flowechniques speeding up convergence have for example besenped in [6]. However,
these have not yet been implemented for the LGM systems.

(b)

(3]
|

0
0

0.2

0.4

0.6

0.2

FIGURE 6. Knudsen pump, flux vs. Knudsen number.

BINARY MIXTURES

In a series of numerical experiments we studied an evaporatindensation problem investigated in [7]. It concerns
a binary mixture of two mechanically identical species, afiewhich (species A interacts with the walls via



condensation and evaporation, while the other apegies Bis completely reflected. In [7] it was proven that in
the fluid dynamic limit species B forms a boundary layer of macopic thickness prohibiting any flow of species A
through the wall (a phenomenon termed as “ghost effect”).

For the numerical simulation one has to cope with an extrgroel convergence to the steady state for small
Knudsen numbers (due to the small flow velocity). Like in theuksen pump case we take advantage of extrapolation
techniques which are possible in the purely determinisigec Calculations with the 141 velocity model confirmed
the above result. We applied the LGM model to the discrettesysf kinetic equations for a gas mixture. Figure 7 (a)
shows the boundary layer of species B (solid line) close eédflthid dynamic limit, the density of species A (dashed
line) and the sum of both densities (dotted line). Figure )7djbplays the mass flow versus the Knudsen number
proving the linear decay fd€n — O.

The above problem can be attacked in an alternative way. arpisystem of two mechanically identical species
can be modeled with LGM within a single system as we will digdrtdicate. Rather than choosing =: 7, as in
formula (1), we could have derived the same model based on

¥ ={(kI,m) eZ%: k4+l+modd} (6)

(with the same se¥ of center points). The uniow; U #_ leads to a system with no interaction of velocity pairs in
¥, x ¥_. However, we can extertd in such a way that these interactions are possible, e.g.teyndixgs’ by the set

Gmix=2°+(0.5,05,0.5)".

The new systeni%mix, 7+ U ¥_) has in addition to the physical convervation laws mass, nmianand energy the
conservation of

P+ = z f(k,I,m and p_= Z f(k,I,m).
k+l+meven k+1+m odd

Thus the even and odd indices may be used to represent twoetitfinteracting species.
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FIGURE 7. Evaporation condensation problem, (a) distributionsfl@y field vs. Knudsen number.

CONCLUDING REMARKSAND FUTURE PERSPECTIVES

We have demonstrated that LGM’s provide a powerful tool foe humerical simulation of rarefied gas flows —
provided one takes into account a few specific features df systems. E.g., schemes of small or modest size
encounter discretization and truncation errors. Howesiace these models are free of random fluctuations, there
is a good chance to eliminate these effects via extrapol&tichniques.



As yet the implemented version is preliminary. In partictlere is a need for features accelerating the approach to
steady state solutions. This will be a task for the near &utur

LGM's are not intended to replace well-established nunaésinulation tools like Monte Carlo systems. E.g. there
is a number of real gas effects which are not easy to impleimenGM’s. However, LGM’s present an alternative
view on rarefied gas flows and may be useful in a number of 8t

We want to point out that a Monte Carlo version of an LGM is iBadstablished by constructing a stochastic
collision operator. To this end we replace the inner sum BfY3<4 Vo f (C+ w) f(c—w) - d(c+ ow) with the term
yf(c+w)f(c—w)-P(c+o,w) with o, € & being randomly chosen according to the probability

Plor) =VYo. /Y, Y= z Yo- (7)

%

In the numerical simulation this means that rather tharstetuting the pre-collisional amoumt (v) f (c— (v—¢))
over the whole discrete b}, we pass it over to one single randomly chosen pair, singislit is done in DSMC
calculations. Let us denote the corresponding randomsaaiiioperator by f]. An appealing fact is that in our
model we can adjust stochasticity to any amount we wish bickinig to the convex combination

AJONE] L (1-2)J[f], A el0,1]. (8)

This enables us to investigate the influence of stochastitihumerical MC schemes. Furthermore, this model may
help to observe the establishment of flow instabilitiesstsimulation results promise interesting insights intoribie
of randomness in physical and numerical systems. This satiflldish a new focus of research for the near future.
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