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Abstract. We show how to accelerate the numerical solution of the Boltzmann equation for a binary gas mixture by using
Graphics Processing Units (GPUs). In order to fully exploit the computational power of the GPU, we adopt a semi-regular
method of solution which combines a finite difference discretization of the free-streaming term with a Monte Carlo evaluation
of the collision integral. The efficiency of the code is demonstrated by studying the propagation of plane harmonic waves of
small amplitude in a binary gas mixture of hard spheres for a wide range of Knudsen numbers and wave frequencies. The
GPU-based code is about two order of magnitudes faster than the CPU version thus proving that GPUs can substantially
speedup the numerical solution of kinetic equations.
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INTRODUCTION

Graphics Processing Units (GPUs), originally developed to execute complex computer graphics applications, have
been increasingly used in a wide range of scientific and engineering computational applications. The attracting
feature of GPUs is their capability of delivering hundreds gigaflops peak performance at the price of conventional
workstations. However, only certain classes of algorithms can achieve the maximum theoretical throughput and, even
in the most favorable cases, algorithms have to be revised, if not redesigned. Numerical schemes for the solution of
kinetic equations are not an exception. For instance, GPUs single instruction multiple data (SIMD) architecture does
not allow an easy porting of DSMC schemes in their traditional form [1]. On the contrary, regular and semi-regular
methods of solution of kinetic equations are very well adapted to GPUs structure [2, 3, 4].
The main aim of the present work is to show that the simulation of acoustic problems in a rarefied gas environment
can greatly benefit from GPU acceleration. The sound wave propagation in a binary gas mixture is a classical subject
of investigation in kinetic theory and its applications range from the design of acoustical gas sensors [5] to the analysis
of planetary atmospheres [6]. This work differs from previous studies on the same topic in two respects. First, the
binary mixture is described by a coupled system of fully nonlinear hard spheres Boltzmann equations. We do neither
resort to their linearized form [5, 7] nor replace the collision integrals with simplified collision models [8, 9]. Second,
the kinetic equations are solved by a semi-regular method. Unlike particle schemes [10], this method of solution does
not require time averaging to provide smooth macroscopic fields and it is better adapted to the parallel architecture of
GPUs, as shown in the next sections.

MATHEMATICAL FORMULATION

We consider a binary mixture of dilute hard sphere gases confined between two flat, infinite and parallel plates located
at x = 0 and x = L, respectively. The atomic species have masses mα and diameters dα , α = 1,2. The state of the
mixture is described by two velocity distribution functions fα(x,v, t) which, in absence of external forces, satisfy the
following set of spatially one-dimensional Boltzmann equations:
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where Qαβ (x,v, t) denote the nonlinear collision integrals
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1
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In Eq. (2), vr = v1 − v is the relative velocity between two colliding atoms and integration extends over the whole
velocity space whereas the solid angle integration extends over the unit sphere, whose points are associated with the
unit vector k̂. The pre-collisional velocities, (v∗,v∗1), are obtained from the post-collision velocities, (v,v1), and the
unit vector on the sphere, k̂, by the relationships
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Initially, the mixture is supposed to be at rest and in uniform equilibrium with densities nα = nα0 and temperature T0.
Maxwell’s completely diffuse boundary condition holds at each plate surface. Accordingly, the distribution functions
of atoms re-emitted from the plates are given by the following expressions:
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, v · n̂w > 0, (4)

where n̂w is the unit vector normal to the plate directed towards the gas and Vw is the velocity of the plate. In Eq. (4)
nα ,w is determined by requiring that

nα ,w(t) =−
(

2π
RT0

)1/2 ∫
v·n̂w<0

[v−Vw(t)] · n̂w fα(v, t)dv (5)

The plate at x = L is assumed to be fixed whereas the plate at x = 0 is supposed to oscillate harmonically with velocity
Vw(t) = V0 sin(ωt)êx, being êx a unit vector normal to the plates. The velocity amplitude V0 and plate oscillation
frequency ω are two specified problem parameters. It should be noted that, following previous numerical studies [7],
the emitter plate displacement is not taken into account. The gas feels the plate motion only through the boundary
condition (4). If the velocity amplitude of the vibrating plate, V0, is sufficiently small, nonlinear effects are negligible
and the solution of the problem is expected to be a standing wave given by the superposition of two propagating
harmonic plane waves generated by the oscillating plate and by reflection at the stationary plate [10]. Accordingly, the
expression of the hydrodynamic velocity profile sufficiently far away from the plates is expected to have the following
form

V (x, t) = A(x)cos(ωt)+B(x)sin(ωt), (6)

where the functions A(x) and B(x) are given by
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]
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In Eqs. (7) and (8), k is the wave number and m is the attenuation coefficient. Both k and m depend on the wave
frequency ω through the real and imaginary part of the dispersion relation, respectively [5].

NUMERICAL METHOD

The system (1) is solved numerically by a method based on the discretization of the distribution functions on a phase
space grid. In the spatially one-dimensional geometry considered here, the region between the plates is divided into
Nx cells of the same size ∆x = L/Nx. A grid in the velocity space is constructed for each species by replacing the
whole infinite velocity space with finite regions Vα . Advantage is taken of the symmetry of the fα which depend on
the velocity through the arguments v‖ = vx and v⊥ = (v2

y + v2
z )

1/2. Accordingly, Vα are cylinders in which a regular
net of nodes, N‖×N⊥, is arranged. The cylinders size is large enough to contain the significant part of the distribution



functions at any spatial location. A separate grid for each species is used. The grid associated with the second species
is obtained from the grid of the first species by multiplying the coordinates of each node by the factor (m1/m2)

1/2. The
distribution functions are assumed to be constant within each cell of the phase space. Hence, fα are represented by the
arrays fα,i j(t) = fα(x(i),v‖( j‖),v⊥( j⊥), t), being x(i),v‖( j‖),v⊥( j⊥) the values of the spatial coordinate and velocity
components in the center of the phase space cell (i, j) with j = ( j‖, j⊥).
The numerical algorithm that advances fα from time tn to the next time level tn+1 = tn +∆t is constructed by time-
splitting the evolution operator into a free streaming step, in which the right hand side of Eq. (1) is neglected, and
a purely collisional step, in which spatial motion is frozen and only the effect of the collision integrals are taken
into account. More precisely, intermediate values of the distribution functions are computed from the free-streaming
equations according to the first order explicit upwind scheme

f n+1/2
α,i j = (1−CF) f n

α,i−sign(vx)CI j +CF f n
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where CI and CF are the integer and fractional part of the absolute value of the Courant number, C =CI+CF = |vx∆t|/∆x.
After completing the free flight step, the homogeneous relaxation step takes place in each cell of the spatial grid
according to the implicit scheme
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being χ the characteristic function of the velocity cell Cα ,j and
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In Eq. (10), the implicit treatment of the loss term prevents the distribution functions from becoming negative during
the calculation. The eight-fold integrals given by Eqs. (11)-(13) are calculated by a Monte Carlo quadrature method,
since a regular quadrature formula would be too demanding in term of computing time. A drawback of the technique
is that, owing to the discretization in the velocity space, mass, momentum and energy are not exactly conserved.
The numerical error is usually small but tends to accumulate during the time evolution of the distribution function.
The correction procedure proposed in Ref. [11] has been adopted to overcome this difficulty. At each time step the
distribution functions are corrected in the following way

f n+1
α = f̃ n+1

α
(
1+Aα +Bα ·v+Cα v2) , (14)

where the constants Aα ,Bα and Cα are determined from the conditions∫
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being ψ(v) = 1,v,v2. The eight-fold integrals appearing in the second term at the right hand side of Eq. (15) are
evaluated while calculating the collision integrals themselves, therefore the increase in computing time is small.
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FIGURE 1. (a)-(b) Cosine component A(x), (a), and sine component B(x), (b), of the hydrodynamic velocity, Eq. (6), for
ωtref = 0.12 (dashed-dotted line), ωtref = 1.25 (dashed line) and ωtref = 12.56 (solid line). Symbols are the numerical results reported
in Ref. [9]. Kn = lref/L = 0.09. (c) Dimensionless attenuation coefficient, mc0/ω , versus the scaled frequency, f/p, in a Argon-
Helium mixture. Triangles: numerical solution of Eq. (1). Circles: experimental data reported in Ref. [12]. Dashed line: theoretical
prediction of the Navier-Stokes equations. n20/n0 = 0.25.

CUDATM IMPLEMENTATION

The computations described below have been performed on an NVIDIArGPU consisting of a set of multiprocessor
with a SIMD-like architecture. During each clock cycle, each core of the multiprocessor executes the same instruction
but operates on different data. CUDATM is the high level programming language specifically created for developing
applications on this platform. A CUDATM program is organized into a serial program which runs on the host CPU
and one or more kernels which define the computation to be concurrently performed. Kernels are executed by threads,
which are organized into a two-level grid and block hierarchy. One may think of a grid as the GPU itself, a block as
multi-processor of the GPU and a thread as a processor core in the multi-processor. GPU memory has a hierarchical
structure whose understanding is of fundamental importance for code optimization. Actually, data transfer is the rate
limiting step in most applications. Each thread may access private, low latency memory registers. Threads belonging
to the same block are allowed to synchronize with each other and are allowed to share data through a shared memory
which is as fast as registers. However, threads from different blocks may coordinate only via operations in the slower
global memory. The code for the numerical solution of Eqs. (1) is a straightforward extension of the one presented in
Refs. [2, 4] to solve the single component hard sphere Boltzmann equation. The code is organized into a host program,
which deals with all memory management and other setup tasks, and three kernels running on the GPU. The first
kernel performs the streaming step whereas the second and third kernels perform the collision step. For each cell of
the velocity space, the streaming step, Eq. (9), involves the distribution function at different space locations. The key
performance enhancing strategy is to allow threads to cooperate in the shared memory. Blocks are composed by a one
dimensional grid of threads, where each thread is associated with one cell of the physical space. As mentioned above,
the collision step is organized into two kernels. The first kernel computes the sequence of samples needed in the Monte
Carlo evaluation of the collision integrals in Eqs. (11)-(13). In this case, a different thread is associated to each sample.
The relaxation step, described by Eq. (10), does not involve any information from nearby cells. Hence the most time
consuming phase can be concurrently executed on the GPU by associating a thread to each cell of the phase space. In
order to reduce data transfers from and to the slow global memory, the computation of macroscopic quantities and the
collision step are performed in the same kernel, by having a thread associated to each cell of the physical space. The
collision kernel updates the distribution function according to Eq. (10), applies the polynomial correction given by
Eq. (14) to ensure conservation of mass, momentum and energy, and finally computes the macroscopic quantities of
interest. The results shown below have been obtained on a commercially available GPU GeForce GTX 260 produced
by NVIDIAr using CUDATM version 2.0. Its theoretical peak performance is 715.4 GFLOPs. The graphic processing
unit is hosted by a personal computer equipped with 4 GB of main memory and an Intelr Core Duo Quad Q9300
CPU, running at 2.5 GHz. The host machine has been used to run the sequential version of the program to obtain the
speed-up data.



RESULTS AND DISCUSSION

The non-dimensional form of Eq. (1) has been adopted in actual computations by normalizing velocities v to vref =
(kBT0/m1)

1/2, being kB the Boltzmann constant, and the spatial coordinate x to the mean free path lref = 1/(
√

2πd2
1n0),

where n0 = n10 + n20 and n10,n20 are the uniform densities of the binary gas mixture in the physical domain in the
initial state. The reference time is then given by tref = lref/vref. The dimensionless length of the physical cells has been
varied in the range ∆x/lref ∈ [0.02,0.1] depending on the oscillation frequency of the plate. In fact, higher spatial
resolution is required for large values of ω because of the shorter wavelength of spatial oscillations. The velocity
space grids have been constructed by distributing a variable number of nodes (N‖ = 40− 80, N⊥ = 20− 40) in the
domain (v‖,v⊥) ∈ Vα = [−Vα ,Vα ]× [0,Vα ], with Vα = 4(m1/mα)

1/2. The dimensionless time step has been varied in
the range ∆t/tref ∈ [0.01,0.25], in order to have a few hundreds time samples per wave period. Finally, the number of
samples used in the Monte Carlo evaluation of each collision integral, Nc, has been varied between 2000 and 9000 per
time step to obtain results almost free from statistical fluctuations.
The GPU-based code has been validated against the numerical solutions presented in Ref. [9] where the sound
propagation in a simple monatomic gas has been studied by solving the linearized Shakhov model equation. The
dispersion relationships for a simple hard sphere gas have been obtained from the numerical solutions of the Boltzmann
equations by following the methodology described in Ref. [10]. After the decay of the initial transient, the velocity field
is evaluated at each time step and the functions A(x) and B(x) are obtained via a chi-square fit of the data. As shown
in Fig. 1a and 1b, the comparison with the numerical results reported in Ref. [9] is quite good. It is worth noticing
that, for the chosen simulation parameters, the linearized Shakhov model equation provides predictions that agree very
well with those of the full Boltzmann equation, as expected. In the application to mixtures, the attenuation coefficient
for a sound wave propagating in a binary mixture of Argon and Helium has been computed. Argon is associated with
species 1, the mass and hard sphere diameter ratios have been set equal to 10 and 1.8, respectively. The overall Helium
molar fraction of the mixture has been set equal to 0.25. It has been verified that the length of the domain, L, resulted to
be at least two times larger than the wave length, 2π/k, for all the investigated frequencies. The approximation given
by Eqs. (7) and (8) would not be accurate, for smaller values of L. The Nelder-Mead simplex method has been adopted
to extract the wave number k and the attenuation coefficient m from A(x) and B(x). In order to take into account
boundary effects, a phase shift is also included in the parameter fits at the higher frequency, as suggested in Ref.
[10]. In Fig. 1c the numerical results are compared with the experimental data reported in Ref. [12]. The attenuation
coefficient m has been made non-dimensional by multiplication by the factor c0/ω , being c0 the adiabatic sound
speed of the mixture. The quantity mc0/ω is plotted versus the scaled frequency f/p, being f = ω/(2π) the wave
frequency and p the pressure of the mixture at the reference state. Good agreement is found for all the investigated
frequencies. As expected, the numerical results agree with the theoretical predictions of the Navier-Stokes equations at
low frequencies. The performance of the GPU implementation is compared with the single-threaded version running
on the CPU by computing the speed-up factor S = TCPU/TGPU, where TCPU and TGPU are the CPU and GPU run times,
respectively. Run times are measured after initial setup, and do not include the time required to transfer data between
the disjoint CPU and GPU memory spaces. Figure 2a shows the relative time which is spent on the streaming step, Ts,
(dark bar) and on the collision step, Tc, (light bar) as well as the total execution time in seconds, indicated by an integer
number over each bar. As expected, the collision step is more time consuming than the streaming step which takes at
most 1% of the overall computing time. Figure 2b reports the obtained speed-up data as a function of the number of
spatial grid points Nx. The speed-up grows rapidly and then it levels up at about 400 if Nx approximately exceeds 3000.
This behavior is the result of the parallel set up of the collision step in Nx independent threads. As discussed above,
in fact, the collision step absorbs most of the computational resources and its execution strongly affects the overall
performances. As shown by the speed-up curve, the GPU power is not fully exploited till the number of concurrent
threads reaches a threshold. Beyond, the speed-up saturates and the computing time approximately behaves as a linear
function of Nx. This behavior closely patterns the one reported in Refs. [2, 3, 4]. It is worth noticing that neither the
GPU-based code nor its CPU version have been fully optimized. Therefore only the order of magnitude of the reported
speed-up should be considered correct.

CONCLUSION

In this paper we have exploited the computational power of modern GPUs to simulate the propagation of small
amplitude waves in a rarefied binary mixture of monatomic gases composed by hard spheres. A system of coupled
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FIGURE 2. (a) Relative time spent on the streaming kernel (dark bar) and on collision kernel (light bar), versus the number of
cells in the physical space, Nx. The numbers above the bars refer to the total execution time expressed in seconds. (b) Speed-up, S,
versus number of cells in the physical space, Nx. N‖ = 60, N⊥ = 30, Nc = 4096.

nonlinear Boltzmann equations has been solved by means of a semi-regular method which combines a finite difference
discretization of the free-streaming terms with a Monte Carlo evaluation of the collision integrals. This method of
solution is ideally suited for SIMD-like parallel architectures provided by commercially available GPUs. For example,
obtaining the attenuation coefficient for f/p = 200MHz/atm with 2048×60×30×2 cells in the phase space, 6144
collisions per time step and 6240 time steps takes only 25 minutes. Performing a similar calculation on a CPU would
have taken a few days. Although we have here emphasized the computational aspects of the problem, this work is
also the first step of a systematic investigation of non-equilibrium effects in gas mixture, such as anomalous sound
dispersion [13] and ultrasonic-driven gas separation [14]. Further aspects of these phenomena will be studied at length
in a future publication.
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