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Abstract. We present a preliminary investigation of the use of a B-spline basis for solving
the Boltzmann equation with the intent of extending the methodology to treat the mobility of
tracer ions moving in electric fields with arbitrary temporal and spatial dependence. The current
study examines a simplified one-dimensional model using the smooth hard sphere Wigner Wilkins
kernel and cubic B-splines. Eigenvalues of the collision operator are compared with accurate known
values. The method produces reasonable results. However, the accuracy of the distribution function
is expected to be more than enough to predict low order moments, as would be needed to study ion
mobility.

Introduction

In this study, tracer particles in an inert gas start from a non-equilibrium, perturbed state and the
approach to a steady state is observed. This allows us to observe the time dependence of the system. Our
mathematical approach uses a cubic B-spline basis to expand the distribution function. The Boltzmann
equation has been solved using numerous approaches[1–3] and the one presented here is not novel. However,
the ultimate goal is to treat tracer ions in electric fields with arbitrary temporal and spatial dependence.
In general, this requires solving the Boltzmann equation with full spatial and velocity dependence, which
for structureless tracer particles requires a six-dimensional equation with time dependence in addition. For
this reason, we seek a numerical approach that is easy to generalize to higher dimension, does not rely upon
mathematical properties of the collision operator for specific models[4, 5], and is computationally efficient.
In higher dimension, evaluating the integrals in the collision term can consume computational resources if
not performed efficiently. Since we ultimately wish to calculate low order moments of velocity in treating
the ion mobility problem, a numerical method should produce distribution functions with accuracy sufficient
for this purpose. Since these moments involve integrals, we expect only modest accuracy is required for the
distribution functions.
B-splines[6–9] offer several intriguing advantages for a numerical method. They are non-zero only over a

finite, well-defined domain which depends upon the order of the polynomials used in the basis. This means
any integral involving B-spline functions necessarily is restricted to a small local domain. Such quantities are
easy to evaluate with a modest number of points using an efficient quadrature scheme. When extending such
an approach to higher dimensions using a product basis of B-spline functions, higher dimensional integrals
reduce to integrals only over a highly localized region about a point. This reduces by orders of magnitude
the effort in evaluating these integrals, and also allows one to tailor integration routines to the behaviour
of the integrand in that region of space. For example, the cusp in the collision integral can cause difficulty
for bases that extend over the entire space since every integration necessarily must deal with it. With a
B-spline product basis, only a small fraction of the basis functions will involve integrals near the cusp, and
these can be performed with numerical methods tailored to deal with this feature. Those basis functions
located away from the cusp will be part of integrals with smooth integrands that are straightforward to
integrate numerically. A B-spline basis also allows some flexibility in choosing boundary conditions for the
distribution function.
Of course, there are some disadvantages using B-spline bases. The basis functions are not orthogonal and

this complicates the methodology somewhat. As well, because they are composed of piecewise polynomial
functions, the basis functions are smooth and continuous only up to a finite number of derivatives, and this
limits the ultimate accuracy of the representation. Finally, spectral convergence is not expected for B-spline
bases.
Clearly, B-spline bases offer advantages and disadvantages. The key question that must be answered

is whether a B-spline basis can produce distribution functions of sufficient accuracy to evaluate low-order
moments accurately while at the same time delivering the numerical efficiencies that allow extension to
higher dimensional problems. The current study is the first step on the path to answering this question.
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Model

The model in this study is an ensemble of tracer particles of mass m1, dilutely dispersed in inert bath
gas particles of mass m2. The collision cross section for tracer-bath collisions is approximated with a hard
sphere cross section [1–3]. The number of bath particles is assumed to be far greater than that of the tracer
particles, allowing us to ignore any collisions between two tracer particles. Only collisions between the bath
and tracer particles are included. Our starting equation is the Boltzmann equation with the Wigner-Wilkins
form of the collision kernel [10, 11], that is

∂f

∂t
= C[f ] , (1)

where C[f ] is the collision integral defined by

C[f ] =

∫ ∞

0

K(x, y)f(x, t)dx − ν(y)f(y, t) , (2)
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where ‘+’ is used when x > y and the ‘-’ is used when x < y. The collision frequency ν is defined as[11]
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in which N is number density of the bath, k is the Boltzmann constant, T is the bath temperature, and Q
and R are defined as
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with the mass ratio γ = m2/m1. With the definitions of Q and R above, a few relations are derived that
proved useful in simplifying algebraic expressions. These are

Q2 + R2 = 1 , (7)

Q − R =
√
γ , (8)

Q + R =
1√
γ
. (9)

To make the numerical approach better behaved the distribution function is written in the form

f(y, t) =
2
√
y√
π
e−yg(y, t) , (10)

in which g(y, t) is the unknown distribution function we want to evaluate. Substituting Eq. (10) into Eqs. (1)
and (2) gives

∂g(y, t)

∂t
=

∫ ∞

0

K̃(x, y)g(x, t)dx − ν(y)g(y, t), (11)
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in which the new form of the kernel can be rearranged to give
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In the evaluation of the collision kernel (Eq. (12)), the
√
y term in the denominator of the factor multiplying

the four integrals causes numerical difficulty at y = 0. To overcome this problem, we evaluated the collision
kernel in Eq. (12) analytically at this point by expanding the error function in a Taylor series about y = 0
to give
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Substituting Eq. (13) into Eq. (12) and taking the limit as y approaches zero gives

lim
y→0

∫ ∞

0

K̃(x, y)f(y, t)dy =
2A√
γ
Q2

∫ ∞

0

e−Q2xg(x, t)dx. (14)

The expression for the collision frequency, ν(y) in the same limit is

lim
y→0

ν(y) =
2A√
γ
. (15)

Method

Our unknown distribution function is expanded in terms of cubic B-splines as

g(y, t)=̇
n−1
∑

i=−3

ci(t)B
3

i (y) , (16)

where ci(t) are time-dependent coefficients, and B3
i (y) are cubic B-spline functions. B-splines (basis splines)

[6–9], are constructed using polynomials of a given degree and smoothness. Cubic B-splines are facile to
work with since they are defined over an interval of four points only. Outside this range the cubic B-spline
is zero. For our case we have used third order cubic B-spline functions on a uniform grid that starts from
y0 = 0 and extends to a finite value of yn = S. The points on the grid are uniformly spaced with the interval
between each point being ∆. The cubic B-spline, B3

i (w) (w = y
∆
− i), is defined as

B3
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1
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w3, 0 ≤ w < 1
w3 − 4(w − 1)3, 1 ≤ w < 2
(4− w)3 − 4(3− w)3, 2 ≤ w < 3
(4− w)3, 3 ≤ w ≤ 4
0, otherwise

. (17)

The index i is the left most point of the curve, thus for i = 0, B3
0(y) starts at 0 and extends to y = y4 = 4∆.

An example of a cubic B-spline is given in Fig. (1). Note that B3
i (y) for all i ≥ n extend past the defined grid

so will not contribute to g. At the same time, the extension of the function B3
i (y) over an interval of four

points shows that the point y = y0 will have contributions from B3
−3(y), B

3
−2(y), and B3

−1(y). This makes
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FIG. 1: Cubic B-spline functions, B3

i (y), for i = −4,−3,−2,−1, 0 defined on a grid of y values

the index i in Eq. (16) run from i = −3 to i = n− 1 to include the contributions from the cubic B-splines
that are actually off the defined y grid. Substituting Eq. (16) into Eqs. (11) and (12) gives

n−1
∑
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d

dt
ci(t)B

3
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0
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]

. (18)

In order to determine the coefficients ci(t), n+ 3 conditions are required. Equation (18) must hold at the
grid points y = yj; j = 0, . . . , n. This provides n+ 1 constraints for ci(t). However, 2 additional conditions
are required and to determine these we force the derivatives of g, that is

∂2

∂y∂t
g(y, t) =

n−1
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d

dt
ci(t)

d

dy
B3

i (y) , (19)

to be zero at the grid boundaries y = {y0, yn}. We have explicitly chosen these boundary conditions but
the procedure for choosing the constraints is a very general one and can include other types of constraints.
With the constraints imposed, Eq. (18) can be expressed in matrix notation as

dc

dt
= Lc, (20)

where

L = B̃
−1

(

K̃− νB

)

, (21)
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and the matrices B̃, B, and ν have the form

B̃ =
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and for the matrix K̃ the first and last rows are zero, and the remaining elements are given by

K̃ji =

∫ S

0

K̃(x, yj)B
3

i (x)dx . (23)

This integral is evaluated using a Gauss-Legendre quadrature scheme. In principle, if S were infinitely large
then νj = ν(yj). Since S is finite, K̃c does not equal precisely νBc at equilibrium. To remedy this, the

values of ν are adjusted to correct for this discrepancy by setting νj =
∑

i K̃ji.
Note that the formulation described above deviates somewhat from the conventional one. Usually when

employing a basis set and obtaining a set of equations as in Eq. (18) the desired coefficients are isolated by
multiplying both sides with a member of the basis and integrating over all coordinates. In this case, we could
have multiplied Eq. (18) by some B3

k(y) and integrated both sides over y to produce a set of linear equations
in ci(t). In our case, because the B-spline basis is not orthogonal, such a procedure does not simplify the
resulting equation as much as desired because an overlap matrix still couples different ci(t). In addition,
this leads to a double integral evaluation on the right hand side. Extending such a procedure to higher
dimensional cases would immediately double the already numerous integrations that must be performed.
For this reason, we employed the procedure above which is numerically less intensive as it involves only a
one-dimensional integral, namely just the one shown in Eq. (18).

Results

There are several means by which the accuracy of the cubic B-spline expansion can be tested and we
have chosen initially to examine the eigenvalues of L because this should be a stringent test. The collision
operator has one zero eigenvalue corresponding to the equilibrium solution, as well as a series of discrete and
continuous eigenvalues. When scaled by ν(0) of Eq. (15) all the discrete eigenvalues occur with magnitudes
less than 1 while the continuous ones occur with magnitudes greater than 1. Converged and accurate values
of the lowest discrete eigenvalues for a number of mass ratios have been reported[11–13] and we compare
those with our calculated values in Table I.
The eigenvalues do not converge as quickly as a function of the number of basis functions as other methods

reported in the literature[12, 13]. With a small number of B-spline basis functions the errors are only a few
percent but quite a large number of basis functions are required to reduce the errors to below 1%. This
convergence behaviour is not unexpected due to the nature of the B-spline basis. The absolute accuracy of
the values is limited by the low order B-spline functions used (cubic in this case). However, as was pointed
out in the Introduction, the goal of the method is to produce a distribution function with sufficient accuracy
so that low-order moments can be accurately predicted. It is possible such a method may not produce
accurate values for the discrete eigenvalues of the collision operator with only a few basis functions but still
produce quite adequate moment predictions,
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TABLE I: Comparison of selected discrete eigenvalues of the collision operator L with known values from the literature.

n |λ1/ν(0)| |λ2/ν(0)| |λ3/ν(0)|

m = 1 10 0.7481 1.0796

20 0.7873 0.9820

50 0.8134 0.9601 1.0455

100 0.8173 0.9677 1.0113

150 0.8179 0.9722 1.0021

SLR[12] 0.8190 0.9795 0.9985

Currently, we are in the process of using other means for testing the accuracy of the method including
comparisons of the distribution functions explicitly, as well as the ability to predict low order moments.
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