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Abstract. The outflow of gas into a vacuum from a supersonic nozzle with a screen mounted at the nozzle exit has been in-
vestigated both experimentally and numerically. The level of back flux was estimated by the pressure inside the probe placed 
in the backflow region. The obtained results indicate a possibility to decrease the back flux by putting a screen on the exit 
part of the nozzle, though improper screen geometry may cause even the back flux to increase. 
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INTRODUCTION 

When a gas exits from a sonic or supersonic nozzle into vacuum, the limiting angle θmax of jet expansion exceeds 
90° relative to the nozzle axis. The flow of gas at angles θ > 90° is known as backflow. Such flows arise when operating 
orientation and control thrusters of space vehicles, in the operation of high-vacuum jet pumps, and also in a number of 
vacuum technological devices. As a rule, backflow has a negative character and should be minimized.  

Backflow control by means of special gas dynamic protecting devices (screens) mounted at the exit of the nozzle is 
discussed in the paper. This study is a continuation of paper [1] where the flow inside the screen was studied both ex-
perimentally and numerically. Up to now the problem of reducing gas phase backflow by means of screens was not 
practically considered. 

 

THE EXPERIMENTAL SET-UP AND DIAGNOSTIC ITEMS 

Experiments were carried out on the large-scale vacuum gas dynamic facility VIKING of the Institute of Thermo-
physics (Siberian Branch of the Russian Academy of Sciences), whose detailed description is presented in [2]. The dif-
ficulties for an experimental investigation of backflows are related to the necessity of a very low pressure in the ambient 
space around a source of gas and, accordingly, to have a high sensitivity equipment allowing to perform measurements 
in a rarefied gas. VIKING allows to generate a supersonic flow with a large gas flow rate and to have a high vacuum in 
the working chamber either in steady conditions (with use of rather expensive cryogenic pumping) or in pulsed mode 
(cheap alternative). The reported experiments were carried out under a pulsed mode with pulse times up to 1 s. The in-
tensity of backflow was estimated from the value of the total pressure in the corresponding points of space. 

In experiments a conical supersonic nozzle was used, with half-angle 14.2°, throat diameter *d  = 10 mm and exit 

diameter da = 20 mm (geometrical exit Mach number M = 2.94). The nozzle was associated to replaceable screens of 
different heights. The ratio between screen and nozzle diameters was ds /da = 1.75. The relative disposition of nozzle, 
screen and total pressure probe is shown in Fig. 1. Screens have been selected so that the angle α between a straight line 
connecting internal edges of nozzle and screen and the nozzle centerline varied from 30° to 90°. As a quick-response 
gauge of total pressure an ion gauge head PMI-10-2 was used and could be considered as a Pitot tube. 

At the front end of the gauge a slot-hole mouthpiece of size 3.5х29 mm was tightly fastened. The radius of the inlet 
part of the pressure probe was 36 mm. The mouthpiece limited the area of registration of back streams up to 94° ≤ φ ≤ 
106° for the nozzle with screen, increased approximately the signal by a factor of 2 and, that is very important, reduced 
the influence on probe readings of the growing pressure in the working chamber during nozzle operation. Due to geo-
metrical reasons the range of streamline angles for the flow entering the probe inlet was 93° ≤ φ ≤ 101° for the nozzle 
without screen.  
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FIGURE 1.  Scheme of working part. 1 – supersonic nozzle, 2 – screen, 3 – pressure gauge PMI-10-2, 4 – slot-hole mouth-
piece. 

 

All experiments were done at room temperature. Before nozzle gas feeding, the working chamber was pumped down 
to a pressure ≤ 10-3 Torr. The working gas (Air) was fed from a compressor through a buffer vessel consisting of 4 stan-
dard 40-liters tanks. Registration of backflow was carried out right after the formation of a gas jet while the pressure 
growth in the working chamber did nor disturb the streamlines in the backflow region and the background gas did not 
start to get into the pressure gauge. 

During the experiment the following parameters were measured: pressure of compressed air in the supplying pipe-
line, pressure of gas in the nozzle stagnation chamber, ambient pressure in the vacuum chamber and readings of the 
total pressure probe. The scheme of measurements is shown in Fig. 2. 

 

FIGURE 2. Scheme of measurements. 

The gas pressure in the nozzle stagnation chamber was adjusted in a range 75–792 Torr and registered by an abso-



lute pressure gauge IKD-6TDa whose signal was moved to a 12 digit ADC and further to the computer. Initial and final 
pressures in the working chamber were registered by a capacitive gauge Baratron 626А with full-scale of 0.1 Torr. To 
know how the ambient pressure in the space near the nozzle varies during gas expansion from the nozzle separate ex-
periments have been made. For this purpose in front of the Pitot tube at a distance ≈ 4 mm from inlet slot edges, a flat 
screen of size 46×19 mm was mounted intercepting a direct stream of air to the sensor, and the measured pressure be-
hind the screen was assumed to be the value of the background pressure. 

The gauge PMI-10-2 measuring a backflow of gas was connected to a vacuum meter VIT-3, which provided power 
supply of the gauge and initial amplification of ion current. After amplification the signal was transferred to the input of 
a digital voltmeter AVM-4306 connected to a computer through a RS-232 interface. The same computer controlled the 
electromagnetic valve which injected gas into the nozzle. The developed software allowed operating synchronously 
nozzle flow and recording of measured signals. After each experiment all chain of total pressure measurements equip-
ment was calibrated in static conditions with a known pressure measured by Baratron. 

The experiments were performed for three values of initial stagnation pressure p0: 75 Torr, 270 Torr and 792 Torr, 
and 3 variants of screen geometry with angles α of 30°, 45°, and 90° in addition to the experiment for a nozzle without 
screen. The total number of studied regimes was therefore 12. The results obtained for p0 = 270 Torr are illustrated in 
Fig. 3 where the time dependence of the ratio of the measured total pressure to the current pressure in the stagnation 
chamber is presented. The command for opening gas supply to stagnation chamber was given by the computer at time 
t = 0.5 s. A delay of approximately 0.1 s is due to inertia of the electromagnetic valve. 

It is possible to see that a rather quick (about 0.1 s) nozzle start takes place. Then during 0.2 s the readings of the 
pressure probe are nearly constant. Throughout the duration of a short pulse the ambient gas has not enough time to 
affect the measured pressure. 

The presented results illustrate that screens do have a significant influence on backflow. The most interesting is the 
fact that this influence is not monotonous – the screens with angles 90° and 45° reduce backflow. However for the 
screen with angle 30° the backflow could be larger or smaller than for a nozzle without screen depending on the stagna-
tion pressure. This conclusion is important for practical applications and the probable reason of this effect will be dis-
cussed below in the comparison of the obtained experimental data with the results of calculations. 

FIGURE 3. Ratio of total pressure to stagnation chamber pressure for regime with p0 = 270 Torr .  
1 – nozzle without screen, 2 – nozzle with 30° screen, 3 – nozzle with 45° screen, 4 – nozzle with 90° screen. 

NUMERICAL SIMULATION OF THE FLOW 

The simulation of the flow inside the screen volume at experimental conditions was performed using the full set of 
unsteady Navier-Stokes (NS) equations, that were solved numerically by an original algorithm based on a staggered 
grid (NS – algorithm) [3]. The domain of simulation consisted of two rectangular regions, as shown by dashed lines in 
Fig. 4. The distribution of parameters in the nozzle exit section that was used as one of the boundary conditions was 
obtained by a preliminary calculation based on parabolized Navier-Stokes (PNS) equations, that were solved by a 
marching procedure (PNS – algorithm) [4]. This calculation was performed using 25 streamtubes, the flow in the throat 
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section was assumed to be sonic and uniform. Here and below the solid wall temperature Tw was assumed to be equal to 
the stagnation temperature 0T . The air was assumed to be a perfect gas with specific heats ratio κ = 1.4. The tempera-

ture dependence of the dynamic viscosity of air was taken for a Lennard-Jones (6 – 12) potential with parameters σ = 
3.617 Å, ε / k = 97 K. The Prandtl number Pr was assumed to be constant and equal to 0.71. The simulations were per-
formed for typical values of stagnation parameters: T0 = 293 K, p0 = 75 Torr, 270 Torr and 792 Torr. The Reynolds 
numbers Re based on the conditions in the nozzle throat section and its radius for the considered regimes were equal to 
7501, 27004 and 79213, respectively. In spite of rather large values of the Reynolds numbers the simulated flow was 
assumed to be steady, axisymmetric and laminar.  

 

The simulation of the flow in the domain shown in Fig. 4 by dashed lines was performed on a uniform rectangular 
grid with mesh sizes dr = dx = 0.05 mm. The axial coordinate x is counted from the position of the screen bottom, the 
nozzle exit section being located at x = 20.4 mm, while the right boundary of the domain is located at x = 100 mm. The 
radial size of the domain is 17.5 mm. The internal radius of the domain in the nozzle region is 11 mm that is 1 mm lar-
ger than the nozzle exit radius, which corresponds to the thickness of the nozzle lip (hlip= 1 mm). 

The conditions at nozzle exit and flow axis of the domain were stated as usual [3]. On solid surfaces the velocity slip 
and temperature jump were taken into account assuming full accommodation. The parameters on the output boundaries 
were found by interpolation from internal points of the domain according to the conditions of a supersonic flow without 
any upstream disturbances. The simulations were performed for 3 values of angle α: 30°, 45° and 90°.  

In our previous paper [1] devoted to the analysis of the same experiment performed for p0 = 900 Torr, the flow be-
hind the screen was simulated by two approaches, namely the Direct Simulation Monte Carlo (DSMC) method [5] 
(PNS-NS-DSMC approach) and the above-mentioned PNS algorithm (PNS-NS-PNS approach) since PNS algorithm 
was found to be an efficient one to describe the peripheral part of the jet issuing into vacuum [6, 7]. As it was found in 
[1] both mentioned approaches predict similar results for the values of the back fluxes for all the screens with 30° ≤ α ≤ 
90°. That is why in this study only PNS-NS-DSMC approach was used to describe the flow behind the screen. 

The rectangular domain ABCDE of simulation of the flow by a DSMC-algorithm is schematically shown in Fig 4. 
The emission of molecules in the domain was performed radially through the surface AE based on the distribution of 
parameters obtained earlier by the NS-algorithm. On surfaces BC, CD and DE full absorption of incident molecules was 
assumed. The solid surface AB was assumed to be diffusely or specularly reflecting. The collisional properties of mole-
cules were described by the VSS molecular model for a repulsive interaction potential between molecules (ω = 0.75, 
αVSS = 1.5325) [5]. To take into account the effect of rotational degrees of freedom of molecules the known Larsen-
Borgnakke procedure [5] was applied. The simulations were performed for the value of the rotational collision number  
Zr = 5. Since the main problem solved by DSMC simulation is the distribution of parameters in the backflow region (θ > 
90°) the axial and radial dimensions of the domain ABCDE were chosen to provide acceptable accuracy for that consid-
ered part of the flow. Through a series of test-calculations these optimal dimensions were found to be: BA = AE = 
10 mm, BC = 20 mm for the regime with screen and BA = AE = 10 mm, BC = 30 mm for the regime without screen. 
Outside domain BCDE the flow was assumed to be collisionless. To collect the asymptotic properties of the flow at 
infinitely large distances from the device the properties of individual molecules leaving the domain through surfaces BC 
and CD were sampled with weighting factor v/1 , where v is the absolute value of molecule velocity. The simulations 
were performed during 2·104 time steps with 106 ÷ 3·106 simulated molecules at the steady stage. 

To calculate the backflow region for the case without a screen the domain ABCDE was moved to the nozzle in such 
a way that the point A was placed in the nozzle exit section at r = 11 mm (hlip = 1 mm). The distribution of parameters 
on the starting surface AE for this case was estimated based on the results of simulation the flow inside the screen with 
α = 90° by NS-algorithm. This regime is characterized by minimum value of base pressure [1] with minimum devia-
tions of the parameters on the surface AE from those taking place at expansion of gas into vacuum from the nozzle 
without screen. 

 
FIGURE 4. Scheme of the nozzle with the screen. 1 – nozzle, 2 – screen, 3 – border of the domain of 

simulation for NS – algorithm, 4  – border of the domain of simulation for DSMC – algorithm. 



RESULTS AND DISCUSSION 

Since the asymptotic properties of the flow at large distances R from the device were illustrated in detail in paper 
[1], only the numerical results for the values measured in our experiments will be reported here. 

For the measured values of pressure in the probe the mean free path of molecules inside the probe lies in the range 
1.3 ÷ 8.6 mm. The corresponding Knudsen number over the slot width 3.5 mm lies in the range 0.37 ÷ 2.5. The regime 
of gas flow inside the probe is close, therefore, to free molecular. In this case the readings of the probe should be com-
pletely determined by the flow rate of gas incoming inside the probe through the probe slot. During DSMC simulation 
this flow rate through the control surface corresponding to the position of the probe slot was collected thus allowing the 
calculation of the absolute value of the pressure inside the probe. 

All the obtained experimental and theoretical data concerning the dependence of pressure inside the probe on the 
angle of screen α  for the regimes with p0 = 75 Torr, 270 Torr and 792 Torr are presented in Figs. 5-7, respectively. 
The data for nozzle without screen are also shown for comparison. 

As it is seen from these figures, the measured and predicted values of absolute values of pressure inside the probe 
are in good agreement. Maximum effect of the screen towards reducing the value of back flux takes place for the screen 
with α  = 90º for all considered values of stagnation pressure.  

 
 
  

 
 

FIGURE 5. Measured (solid lines and squares) and numerical 
(dashed lines and circles) data for normalized probe pressure 
for the regime with p0 = 75 Torr for studied screens. The data 
for nozzle without screen are shown by lines without symbols. 

 
 

FIGURE 6. Measured (solid lines and squares) and numerical 
(dashed lines and circles) data for normalized probe pressure 

for the regime with p0 = 270 Torr for studied screens. The data 
for nozzle without screen are shown by lines without symbols. 

 
 

FIGURE 7. Measured (solid lines and squares) and numerical (dashed lines 
and circles) data for normalized probe pressure for the regime with p0 = 792 
Torr for studied screens. The data for nozzle without screen are shown by 
lines without symbols. 



 
 
 

For the regime with p0 = 75 Torr all the considered screens allow reducing the back flux compared with the case of 
nozzle without screen. 

For the regime with p0 = 270 Torr the situation is ambiguous: theory predicts small increase of back flux for the 
screen with α  = 30º compared with the case of a nozzle without screen while the experiments did not confirm this re-
sult. 

For the regime with p0 = 792 Torr both experiment and theory reveal the increase of back flux for the screen with α  
= 30º that means that improper screen geometry may cause even the back flux to increase. 

CONCLUSION 

The main results of the performed study may be summarized as follows: 
1. It is possible to decrease the back flux (by factor of about two in the considered conditions and geometry) by putting 

a screen on the exit part of the nozzle, though improper screen geometry may cause even the back flux to increase. 
2. Maximum effect of the screen towards reducing the value of back flux takes place for the screen with α  = 90º for 

all considered values of stagnation pressure.  
3. Both experiment and theory reveal increasing of normalized back fluxes with decreasing the stagnation pressure or 

the Reynolds number. 
4. The numerical data for absolute value of the pressure inside the probe placed in the backflow region are in good 

agreement with the measured results, which proves that the description of that region of the flow by the applied 
PNS-NS-DSMC approach is quite adequate. 
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