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Abstract. We consider physical and mathematical aspects of the model of simple reacting spheres (SRS) in the kinetic theory
of chemically reacting fluids. The SRS, being a natural extension of the hard–sphere collisional model, reduces itself to the
revised Enskog theory when the chemical reactions are turned off. In the dilute–gas limit, it provides an interesting kinetic
model of chemical reactions that has not been considered before. In contrast to other reactive kinetic theories (e.g., line-of-
centers models), the SRS has built-in detailed balance and microscopic reversibility conditions. The mathematical analysis of
the work consists of global existence result for the system of partial differential equations for the model of SRS.
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SIMPLE REACTING SPHERES

Simple reacting spheres (SRS) has been developed by N. Xystris, J. S. Dahler [1] and further advanced by J. S. Dahler
and L. Quin in [2], [3]. The present paper is the first in a series of our articles on physical and mathematical properties of
SRS. In the SRS model, the molecules behave as if they were single mass points with two internal states of excitation.
Collisions may alter the internal states: this occurs when the kinetic energy associated with the reactive motion exceeds
the activation energy. Reactive and non-reactive collision events are considered to be hard spheres-like. In a four
component mixture A, B, A∗, B∗, the chemical reactions are of the type: A+B 
 A∗+B∗. Here, A∗ and B∗ are distinct
species from A and B. We use the indices 1, 2, 3, and 4 for the particles A, B, A∗, and B∗ respectively. Furthermore,
mi and di denote the mass and the diameter of the i-th particle, i = 1, . . . ,4, and reactions take place when the reactive
particles are separated by a distance σ12 = 1

2 (d1 + d2) or σ34 = 1
2 (d3 + d4). The conservation of mass has the form

m1 +m2 = m3 +m4 = M. Reactions take place when the reactive particles are separated by a distance σ12 = 1
2 (d1 +d2),

where di denotes the diameter of the i-th particle.

Elastic encounters

In the case of elastic collisions between a pair of particles from species i and s, the initial velocities v, w take post–
collisional values

v′ = v−2
µis

mi
ε〈ε,v−w〉, w′ = w+2

µis

ms
ε〈ε,v−w〉. (1)

Here, 〈· , ·〉 is the inner product in R3, ε is a vector along the line passing through the centers of the spheres at the
moment of impact, i.e., ε ∈ S2

+ = {ε ∈ R3 : |ε|= 1,〈ε,v−w〉 ≥ 0} and µis = mims/(mi +ms) is the reduced mass of
the colliding pair. mi and ms are the masses of particles from i-th and s-th species, respectively (i,s = 1,2,3,4).

Reactive encounters

For the reactive collision between particles from species i and s to occur (i,s = 1, . . . ,4), the kinetic energy associated
with the relative motion along the line of centers must exceed the activation energy γi,

(1/2)µis
(
〈ε,v−w〉

)2 ≥ γi, (2)



In the case of the (endothermic) reaction A+B → A∗+B∗ the velocities v, w take their post–reactive values

v‡ =
1
M

[
m1v+m2w+m4

√
µ12

µ34

{
(v−w)− ε〈ε,v−w〉+ εα

−
}]

, (3)

w‡ =
1
M

[
m1v+m2w−m3

√
µ12

µ34

{
(v−w)− ε〈ε,v−w〉+ εα

−
}]

, (4)

with α− =
√(

〈ε,v−w〉
)2−2Eabs/µ12 , and Eabs the energy absorbed by the internal degrees of freedom. The

absorbed energy Eabs has the property Eabs = E3 + E4 − E1 − E2 > 0, where Ei > 0, i = 1, . . .4, is the energy of
i-th particle associated with its internal degrees of freedom.
Now, in order to complete the definition of the model, the activation energies γ1, γ2 for A and B are chosen to satisfy
γ1 ≥ Eabs > 0, and by symmetry, γ2 = γ1.
For the inverse (exothermic) reaction, A∗+B∗ → A+B, the post–reactive velocities are given by

v† =
1
M

[
m3v+m4w+m2

√
µ34

µ12

{
(v−w)− ε〈ε,v−w〉+ εα

+
}]

, (5)

w† =
1
M

[
m3v+m4w−m1

√
µ34

µ12

{
(v−w)− ε〈ε,v−w〉+ εα

+
}]

, (6)

with α+ =
√(

〈ε,v−w〉
)2 +2Eabs/µ34, and the activation energies for A∗ and B∗ being γ3 = γ1−Eabs and γ4 = γ3.

Post- and pre-collisional velocities of the reactive pairs satisfy conservation of the momentum

m1v+m2w = m3v‡ +m4w‡, m3v+m4w = m1v† +m2w†. (7)

A part of kinetic energy is exchanged with the energy absorbed by the internal states. The following equalities hold:

m1v2 +m2w2 = m3v‡2 +m4w‡2 +2Eabs, m3v2 +m4w2 = m1v†2 +m2w†2−2Eabs. (8)

The system of equations

For i = 1,2,3,4, fi(t,x,v) denotes the one-particle distribution function of the ith component of the reactive mixture.
The function fi(t,x,v), which changes in time due to free streaming and collisions (elastic and reactive), represents at
time t the number density of particles at point x with velocity v.
The SRS kinetic system has the form

∂ fi

∂ t
+ v

∂ fi

∂x
= JE

i + JR
i , i = 1,2,3,4, (9)

where JE
i is the non-reactive (hard-sphere) collision operator

JE
i =

4

∑
s=1

{
σ

2
is

∫∫
R3×S2

+

[
f (2)
is (t,x,v′,x−σisε,w′)− f (2)

is (t,x,v,x+σisε,w)
]
〈ε,v−w〉dεdw

}

−βi jσ
2
i j

∫∫
R3×S2

+

[
f (2)
i j (t,x,v′,x−σi jε,w′)− f (2)

i j (t,x,v,x+σi jε,w)
]

Θ(〈ε,v−w〉−Γi j)〈ε,v−w〉dεdw, (10)

and f (2)
is approximates the density of pairs of particles in collisional configurations. The second term in (10), with

βi j in front of it, singles out those pre-collisional states that are energetic enough to result in the reaction, and thus
preventing double counting of the events in the collisional integrals. In the case when βi j = 0, for i, j = 1, . . . ,4, the
term JE

i , in (10), reduces to two-particle collisional operator for 4-species mixtures with hard-sphere potential.



For i = 1,2,3,4, the reactive terms are

JR
i =βi jσ

2
i j

∫∫
R3×S2

+

[(
µi j

µkl

)3/2

f (2)
kl (t,x,v�i j ,x−σi jε,w�

i j)− f (2)
i j (t,x,v,x+σi jε,w)

]
Θ(〈ε,v−w〉−Γi j)〈ε,v−w〉dεdw. (11)

Here, 0≤ βi j ≤ 1 are the steric factors, Γi j =
√

2γi/µi j, and Θ is the Heaviside step function. The pairs of post-reactive
velocities are (v�i j ,w

�
i j) = (v‡,w‡) for i, j = 1,2, and (v�i j ,w

�
i j) = (v†,w†) for i, j = 3,4. Pairs of indices (i, j) and (k, l)

are from the set of quadruples (i, j,k, l): {(1,2,3,4), (2,1,4,3), (3,4,1,2), (4,3,2,1)}.

Lemma 1.
(1) For i,s = 1,2,3,4, the inverse velocities to v′, w′ are given by

v = v′−2
µis

mi
ε〈ε,v′−w′〉, w = w′+2

µis

ms
ε〈ε,v′−w′〉. (12)

For fixed ε , the Jacobian of the transformation (v,w) 7→ (v′,w′) is equal to−1. Furthermore, 〈ε,v′−w′〉=−〈ε,v−w〉,
(2) The inverse velocities to v‡, w‡ are given by

v =
1
M

[
m3v‡ +m4w‡ +m2

√
µ34

µ12

{
(v‡−w‡)− ε〈ε,v‡−w‡〉+ εα

+
}]

, (13)

w =
1
M

[
m3v‡ +m4w‡−m1

√
µ34

µ12

{
(v‡−w‡)− ε〈ε,v‡−w‡〉+ εα

+
}]

, (14)

and the inverse velocities to v†, w† are given by

v =
1
M

[
m1v† +m2w† +m4

√
µ12

µ34

{
(v†−w†)− ε〈ε,v†−w†〉+ εα

−
}]

, (15)

w =
1
M

[
m1v† +m2w†−m3

√
µ12

µ34

{
(v†−w†)− ε〈ε,v†−w†〉+ εα

−
}]

. (16)

(3) For fixed ε , the Jacobians of the transformations (v,w) 7→ (v†,w†) and (v,w) 7→ (v‡,w‡) are given by(
µ34

µ12

)3/2 〈ε,v−w〉
α+ and

(
µ12

µ34

)3/2 〈ε,v−w〉
α− , (17)

respectively.

(4) Furthermore, 〈ε,v†−w†〉 = α+, 〈ε,v‡−w‡〉 = α−,
1
2

µ12
(
〈ε,v−w〉

)2− γ1 =
1
2

µ34
(
〈ε,v‡−w‡〉

)2− γ3, and
1
2

µ34
(
〈ε,v−w〉

)2− γ3 =
1
2

µ12
(
〈ε,v†−w†〉

)2− γ1.

Due to space limitations, the proof of Lemma 1 will be provided in the forthcoming work.

THE DILUTE SRS KINETIC SYSTEM

The system of equations (9)-(11) requires a closure relation for f (2)
is . In the case of moderately dense gases, the two-

particle distribution function f (2)
is is usually approximated by

f (2)
is (t,x1,v1,x2,v2) = g(2)

is (x1,x2 |{ni(t, ·)}) fi(t,x1,v1) fs(t,x2,v2), (18)

where ni(t,x) =
∫
R3 fi(t,x,v)dv is the local number density of the component i and g(2)

i j is the known pair corre-
lation function for a non-uniform hard-sphere system at equilibrium with the local densities ni(t,x). The notation



g(2)
i j (x1,x2 |{ni(t, ·)}) indicates that g(2)

i j is a functional of the local densities ni. The closure relation (18) is employed
in [2] and [3]. Finally, in the case of non-reactive mixtures (βi j = 0, for i, j = 1, . . .4), the corresponding system of
equations (9)-(11) becomes the revised Enskog system for 4-species mixtures [4].
In this work, we will consider a dilute gas regime with the corresponding closure relation given by:

f (2)
is (t,x1,v1,x2,v2) = fi(t,x1,v1) fs(t,x2,v2). (19)

The system of equations (9)-(11) takes the form:

∂ fi

∂ t
+ v

∂ fi

∂x
= JE

i + JR
i , fi(0,x,v) = fi0(x,v), i = 1, . . . ,4, (x,v) ∈ Ω×R3, (20)

with

JE
i =

4

∑
s=1

{
σ

2
is

∫∫
R3×S2

+

[
fi(t,x,v′) fs(t,x,w′)− fi(t,x,v) fs(t,x,w)

]
〈ε,v−w〉dεdw

}

−βi jσ
2
i j

∫∫
R3×S2

+

[
fi(t,x,v′) f j(t,x,w′)− fi(t,x,v) f j(t,x,w)

]
Θ(〈ε,v−w〉−Γi j)〈ε,v−w〉dεdw, (21)

and

JR
i =βi jσ

2
i j

∫∫
R3×S2

+

[(
µi j

µkl

)3/2

fk(t,x,v�i j) fl(t,x,w�
i j)− fi(t,x,v),w) f j(t,x,w)

]
Θ(〈ε,v−w〉−Γi j)〈ε,v−w〉dεdw, (22)

where fi0, i = 1, . . . ,4 are suitable nonnegative initial conditions that will be defined later and Ω ⊆ R3 denotes the
spatial domain of the gas mixture. We consider two choices for the set Ω:, Ω = R3, or Ω being a 3-dimensional torus
[0,L]3, L > 0. The latter choice corresponds to case of the periodic boundary conditions on [0,L]3. Also, Γi j =

√
2γi/µi j

and Θ is the Heaviside step function. As before, the pairs of post-reactive velocities are (v�i j ,w
�
i j) = (v‡,w‡) for

i, j = 1,2, and (v�i j ,w
�
i j) = (v†,w†) for i, j = 3,4. The pairs of indices (i, j) and (k, l) are from the set of quadruples

(i. j,k, l): {(1,2,3,4), (2,1,4,3), (3,4,1,2), (4,3,2,1)}.

Proposition 1. Assume that βi j = β ji for (i, j) ∈ {(1,2),(2,1),(3,4),(4,3)}. For φi measurable on Ω×R3 and
fi ∈C0(Ω×R3), i = 1, . . . ,4, we have:

4

∑
i=1

∫
R3

φiJE
i dv =

4

∑
i=1

4

∑
s=1

σ
2
is

∫∫∫
R3×R3×S2

+

[
φi(x,v)+φs(x,w)−φi(x,v′)−φs(x,w′)

]
×

[
fi(v′) fs(w′)− fi(v) fs(w)

]
〈ε,v−w〉Ξis dεdwdv,

(23)

4

∑
i=1

∫
R3

φiJR
i dv =

∫∫∫
R3×R3×S2

+

[
β12σ

2
12φ1(x,v)+β21σ

2
21φ2(x,w)−β34σ

2
34φ3(x,v‡)−β43σ

2
43φ4(x,w‡)

]
×

[(
µ12

µ34

)3/2

f3(x,v‡) f4(x,w‡)− f1(x,v) f2(x,w)

]
Θ(〈ε,v−w〉−Γ12)〈ε,v−w〉dεdwdv,

(24)

where Ξis, appearing in (23), is given by

Ξis =


1
2 Θ(〈ε,v−w〉−Γis)+ 1

2 (1−βis)Θ(Γis−〈ε,v−w〉), if (i,s) ∈ I,
1
4 Θ(〈ε,v−w〉), if i = s,
1
2 Θ(〈ε,v−w〉), otherwise,

(25)

with I = {(1,2),(2,1),(3,4),(4,3)}.
The post-collisional velocities, v′ and w′, are given in (1), while the post-reactive velocities, v‡ and w‡, are given in
(3)-(4).

Due to space limitations, the proof of Proposition 1 will be provided in the forthcoming work.



CONSERVATION LAWS

Under the additional assumption β12σ2
12 = β34σ2

34, Proposition 1 implies that for any a,c ∈ R and b ∈ R3,

φi(x,v) = ami +mi〈b,v〉+ c
(

miv2

2
+Ei

)
, i = 1, . . . ,4, =⇒


4
∑

i=1

∫
R3

φiJE
i dv = 0,

4
∑

i=1

∫
R3

φiJR
i dv = 0.

(26)

Property (26) implies that if fi is a nonnegative smooth solution of (20) on [0,T ], T > 0, then, at least formally, we
have the following conservation laws for t ∈ [0,T ]:

4

∑
i=1

∫∫
Ω×R3

mi fi(t,x,v)dvdx =
4

∑
i=1

∫∫
Ω×R3

mi fi0(x,v)dvdx, (mass) (27)

4

∑
i=1

∫∫
Ω×R3

miv fi(t,x,v)dvdx =
4

∑
i=1

∫∫
Ω×R3

miv fi0(x,v)dvdx, (momentum) (28)

4

∑
i=1

∫∫
Ω×R3

(
miv2

2
+Ei

)
fi(t,x,v)dvdx =

4

∑
i=1

∫∫
Ω×R3

(
miv2

2
+Ei

)
fi0(x,v)dvdx, (total energy) (29)

where fi0(x,v), i = 1, . . . ,4, are nonnegative initial conditions of the dilute SRS kinetic system (20). For fi, a smooth
solution with compact support, the above conservation laws follow easily from multiplying i-th equation of the dilute
SRS system by φi, integrating with respect to (t,x,v) ∈ [0,T ]×Ω×R3, and then applying (26).

ENTROPY IDENTITY, H-FUNCTION, AND EQUILIBRIUM SOLUTIONS

Proposition 1 also implies existence of a Liapunov functional (an H-function) for (20)-(22) consistent with sys-
tem’s physical equilibrium. Assume that for i, j = 1, . . . ,4, the conditions βi j = β ji and β12σ2

12 = β34σ2
34 are sat-

isfied. For fi, a smooth nonnegative solution, we multiply (20) by 1 + log( fi/µi j) with i = 1, . . .4 and (i, j) ∈
{(1,2),(2,1),(3,4),(4,3)}, integrate over Ω×R3, and use (23)–(24) (with φi = log( fi/µi j)) to obtain the follow-
ing entropy identity:

d
dt

4

∑
i=1

∫∫
Ω×R3

fi log( fi/µi j) dvdx

+
4

∑
i,s=1

σ
2
is

∫
· · ·

∫
Ω×R3×R3×S2

+

[
fi(v′) fs(w′)− fi(v) fs(w)

]
log

(
fi(v′) fs(w′)
fi(v) fs(w)

)
〈ε,v−w〉Ξis dεdwdvdx

+β12σ
2
12

∫
· · ·

∫
Ω×R3×R3×S2

+

{[(
µ12

µ34

)3/2

f3(v‡) f4(w‡)− f1(v) f2(w)
]
×

log

[(
µ12

µ34

)3/2 f3(v‡) f4(w‡)
f1(v) f2(w)

]
Θ(〈ε,v−w〉−Γ12)〈ε,v−w〉

}
dεdwdvdx = 0. (30)

We observe that the second and the third terms in the left hand side of (30) are nonnegative and thus, the convex
function H(t), defined by

H(t) =
4

∑
i=1

∫∫
Ω×R3

fi(t,x,v) log [ fi(t,x,v)/µi j] dvdx, (31)

is non-increasing in t ≥ 0. Hence H(t) is an H-function (Liapunov functional) of the system (20)-(22).



For the standard macroscopic quantities (moments of fi), namely the number densities ni(t,x), the macroscopic
velocity u(t,x), and the macroscopic temperature T (t,x), we have the following characterization of equilibrium
solutions for the system (20)-(22):

Proposition 2. Assume that for i, j = 1, . . . ,4, the coefficients 0 < βi j ≤ 1 satisfy the conditions βi j = β ji and β12σ2
12 =

β34σ2
34. Let ni(t,x)≥ 0, u(t,x), and T (t,x)≥ 0 be given measurable functions. Then for all 0 ≤ fi ∈ L1(Ω×R3), the

following statements are equivalent:

1. fi = ni

( mi

2πkT

)3/2
exp

(
−mi(v−u)2

2kT

)
, i = 1, . . . ,4, and n1n2 =

(
µ12

µ34

)3/2

n3n4 exp
(

Eabs

kT

)
;

2. JE
i ({ fi}) = 0 and JR

i ({ fi}) = 0, i = 1, . . . ,4;

3.
4
∑

i=1

∫
R3

[
JE

i ({ fi})+ JR
i ({ fi})

]
log( fi/µi j) dv = 0.

The proof of Proposition 2 follows a similar line of arguments as the proof of Proposition 3.2 in [5].

EXISTENCE RESULT

Definition 1. A nonnegative fi ∈ L1
loc((0,T )×Ω×R3), i = 1,2,3,4, is a mild solution of the system (20)-(22) if for

each 0 < T < ∞, the gain and loss terms of JE
i and JR

i are in L1(0,T ), a.e. (almost everywhere) in (x,v) ∈Ω×R3 and

f #
i (t,x,v)− f #

i (s,x,v) =
∫ t

s

[
JE

i ({ fi})#(τ,x,v)+ JR
i ({ fi})#(τ,x,v)

]
dτ, 0 < s < t ≤ T, (32)

where f #
i (t,x,v) = f (t,x+ tv,v) and with similar definitions for JE#

i and JR#
i .

The following result generalizes Theorem 4.2 of [5] (see also Theorem 5.2 of [6]).

Theorem 1. Assume that for i, j = 1, . . . ,4, the coefficients 0 ≤ βi j ≤ 1 satisfy the conditions βi j = β ji and β12σ2
12 =

β34σ2
34. If for each i = 1, . . . ,4, the initial conditions fi0 ≥ 0, satisfy

sup
i

∫∫
Ω×R3

(
1+ x2 + v2 + log+ fi0

)
fi0 dvdx = C0 < ∞, (33)

with log+(z) = max{log(z),0}, then there exists a nonnegative mild solution { fi} of the system (20)-(22), with
fi ∈C([0,T ];L1(Ω×R3)) and such that fi(t)

∣∣
t=0= fi0, for i = 1,2,3,4.

The proof of Theorem 1 is similar to Theorem 4.2 of [5] and will not be provided here.

Remark 1. In the case βi j = 0, for i, j = 1, . . . ,4, Theorem 1 provides existence result for chemically inert system
(20)-(22).
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