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Microchannel Using the Boltzmann Equation 

O. I. Rovenskaya 

DiEM Dipartimento di Energetica e Macchine University of Udine, via. delle Scienze, 208, 33100 Udine, Italy 

Abstract. The pressure-driven Poiseuille gas flow in two- dimensional microchannel with aspect ratio 10 is 
numerically investigated using the Boltzmann kinetic equation. The pressure ratio between the inlet and outlet of the 
channel is varied from 2.07 to 3.06 and the value of the exit Knudsen numbers Kne ranging between slip 0.027 and 
transitional 0.22 regimes. The validity of the first and second order slip boundary conditions is discussed. The comparison 
with the results calculated by means of the Navier - Stokes equations with slip boundary conditions shows that second 
order models are valid for Kne up to 0.22, whereas the first order one is accurate for Kne ≤ 0.055.  
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INTRODUCTION 

In recent times, there has been increasing interest in computing flows with the more fundamental kinetic 
equations for applications involving atmospheric re-entry, hypersonic flight, astrophysical gas dynamics and flows 
in microscale devices [1]. In these applications the utility of the Navier – Stokes (NS) equations may be limited due 
to rarefied gas effects or lack of appropriate constitutive or state relations. NS models are generally valid if Knudsen 
number Kn < 0.01, but can be extended into the slip-flow regime (0.01 < Kn < 0.1) and partially to the transition 
flow regime Kn < 0.25 by appropriate treatment of the wall boundary [2-4]. In practice, gas flows in microchannels 
may encounter a wide range of conditions that include the continuum, slip and transition regimes. Therefore, the 
numerical modelling of microflows with the more fundamental Boltzmann kinetic equation is of great interest. It is 
expected that the application of the Boltzmann equation will give more general and correct results. The kinetic 
Boltzmann equation describes the evolution of a one-particle distribution function and enjoys validity over a wide 
range of transport phenomena than the continuum NS equation. In general, the Boltzmann equation is an integro-
differential equation with a complicated nonlinear collision operator. Therefore, many investigators prefer to use 
different collision models to approximate the Boltzmann collision integral. In the present work the discrete velocity 
method [1, 5] for the approximation of the Boltzmann equation is applied. Direct solution of the Boltzmann equation 
methods can be much more accurate, and can be competitive with Monte-Carlo methods for problems in which the 
solution is not very far from thermodynamical equilibrium, and high accuracy is required. Moreover, in the most of 
the literature references the numerical solution of Boltzmann equation is used for investigation of external flows. 
Thus, it is interesting to apply this equation for the analysis of internal flows over a wide range of Kn.  

STATEMENT OF THE PROBLEM AND NUMERICAL METHODS 

In the present work the two dimensional problem of laminar flow in a rectangular microchannel, with height 
H = 1 µm and length L =10 µm, is considered. To avoid difficulties in inlet and outlet boundary conditions, inlet and 
outlet zones of free flow with a length of 0.1L and 0.2L, respectively, are introduced. The gas flows through channel 
due to a pressure difference between inlet and outlet. The inlet total pressure p0i ranges from 2.07 × 105 to 3.06 × 105 
Pa, while the outflow exit pressure pe is kept constant at 105 Pa.  
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Compressibility effect is monitored via the local value of Mach number Ma and the isentropic exit Mais, i.e. the 
Ma that would arise from an isentropic flow with the same pressure ratio as the real one. The wall temperature Tw is 
constant and equals to the inlet total temperature T0i. In analogy to the Mais, an isoentropic Reynolds number Reis, 
using the isoentropic exit mass flow, computed with the density is and velocity uis for isoentropic flow, and an 
isoentropic Knis (for hard sphere model) are defined as  
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where 0 0γa RT  is a speed of sound,  is viscosity, T0, 0 are reference values, is is a mean free path for an 
isoentropic state. Nitrogen is used as working gas; specific heat ratio is  = 1.4, Prandtl number Pr = 0.72. For the 
kinetic statement Knis is chosen from 0.025 (slip regime) to 0.2 (transitional regime). Continuum computations are 
carried out for the corresponding Reis. Regular Reynolds, based on an actual computed mass flow, will be smaller.  

Two different series of computations based on the kinetic approach were carried out. In the former, Kn is kept 
constant (Knis = 0.0375 and 0.1) over a range of pressure ratio (see Table 1), in the latter pressure ratio is kept 
constant and equals 2.07, while a range of Knudsen number (see Table 1) are considered. 

 
TABLE 1. Isoentropic and exit conditions. 

Mais p0i/pe Kne Ree  
1.075 2.07 0.0270.22 22.781 
1.157 2.29 0.04, 0.11 14.45, 3.28 
1.233 2.5 0.04, 0.11 16.8, 3.93 
1.318 2.84 0.04, 0.11 19.93, 4.67 
1.372 3.06 0.04, 0.11 22.18, 5.24 

 
The numerical method is based on the direct numerical solution of the Boltzmann equation:  
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where ν(f)f is the integral of “direct collisions”, ν(f) is the frequency of collisions and N(f, f) is the integral of 
“inverse collisions”, ( , , )f f t x ξ  is the distribution function, ξ , *ξ , ξ , *ξ  are velocities of pair of particles before 
and after collision, J(f, f) is the collision integral, * g ξ ξ  is the relative velocity, and b,  are impact parameters. 
In the rest of the paper the non-dimensional formulation of the problem is used, the scale quantities are the follows: 

0 02v RT  is the thermal velocity, H is height of the channel, effective radius σeff equals to the radius σ∞ of hard-
sphere particles, n0 and T0 are characteristic density and temperature respectively.  

For the discretization of (1), the 3D Cartesian grid {} with equidistant nodes is defined in the velocity space, 
and the grid {xi, yj} is defined in the physical space. Introducing of the grid values the obtained set of equations for 
fij can be numerically solved using time splitting method. In a small time interval t, the numerical solution of the 
transport step (2) and the space homogeneous collision step (3) are considered. The transport part is approximated by 
a standard finite volume scheme: 
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where γ, 1/ 2,

n
i jF   is the numerical fluxes, and  γ, 1/ 2, γ, 1/2, γ , 1/2, γ , 3/2,min mod , ,n n n n

i j i j i j i jf f f         is the flux limiter 
function, provided a second order of the scheme. The time step follows the condition: 
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 max max/ maxt CFL V x V y     , where CFL is the Courant number, max 04 iV T  is a boundary of the velocity 
space and Δx and Δy are the mesh sizes in the x and y directions, respectively. To approximate collision step the 
explicit-implicit approach is applied. 
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where the frequency of collisions ν(f) and the “inverse collisions” integral N(f, f) are taken from the time level n and 
the velocity distribution function from n + 1 level. The quasi - Monte-Carlo method, in which Korobov sequences 
are used [5], is employed for calculation of the ν(f) and N(f, f). In the general case, the post-collision velocities do 
not coincide with grid nodes in the velocity space. Therefore, to ensure the execution of conservative laws the 
procedure of redistribution energy between nearest nodes in velocity grids (for each collision) is used [5]. This 
approach provides with microscopic (kinetic) conservation for each collision. Since in the explicit-implicit method 
the distribution function is taken from the upper time level the procedure of conservative correction should be 
applied [1]. The conservative correction procedure ensures the positive value of the distribution function after 
relaxation stage. Therefore, velocity distribution function has acceptable accuracy even if coarse grid is used.  

Maxwell diffuse reflecting boundary conditions with the full accommodation on channel walls are applied. For 
all particles coming off the surface it is assumed that molecules are emitted with the Maxwell distribution functions 
corresponding the zero mean flow velocity, the temperature is equal to the wall temperature Tw and the density 
calculated from the condition of equality of the fluxes of particles coming on and off the wall. At the central line of 
the channel the specular boundary condition is imposed.  

Flow quantities at inlet and outlet boundary faces are determined using the theory of the characteristics in accord 
with standard CFD practices, assuming adiabatic and isentropic flow conditions [6, 7]. The Maxwell velocity 
distribution function is assumed for molecules entering from the inlet and outlet boundaries into the solution domain. 
At the inflow boundary, the pressure p0i, temperature T0i, and transverse velocity vi are generally specified, where the 
transverse velocity is assumed to be zero and only the streamwise velocity should be calculated. The inlet zone is 
10% of the wall length and is considered as a specular reflector. This consideration would provide more realistic 
condition at the channel inlet in microflow treatments [7]. At the outflow variables except pressure are determined 
from the simulation. According to the theory of characteristic the exit pressure directly influences the velocity of the 
molecules adjacent to the outlet boundary and the thermodynamic properties of the cells located near the outlet, 
allowing for an exit pressure in the channel larger then the actual back pressure, in the case of choked flow. Hence, a 
nonphysical prediction of the flow field in the Boltzmann equation statement [7] may be obtained. To properly 
implement the physics of flow, the back pressure is applied right at the outer region of the buffer zone, considered as 
a free flow one. Therefore, the solution is permitted to freely adjust at the real outlet. Influence of size of buffer zone 
on the flow has been carried out and computations were made for buffer zone equals 20% of the wall length L.  

A second order scheme can be easily derived simply by symmetrizing the first order scheme: transport step over 
the time interval Δt/2, relaxation one over the time interval Δt, and again transport one over Δt/2, provided every 
step is solved with a method at least second order accurate in time. 

Parallelization in physical space is made to improve the efficiency of the algorithm. Each processor is assigned 
its own set of points in physical space to compute the distribution function at these points. The relaxation stage is 
calculated independently on the various processors. Before the stage of transport, the processors exchange data at 
neighboring points not assigned to this processor. The software code was written in C++ with the use of MPI 
(Message Passing Interface).  

RESULTS AND DISCUSSION 

To compare with continuum results the viscous, compressible NS equations for 2D laminar flow are solved by 
employing a hybrid finite difference-finite volume method. For the time integration implicit, spatially factored ADI 
scheme proposed by Beam and Warming is used. The program in FORTRAN has been developed by Croce et. al. 
for the simulations of microflows [8]. Here, a range of Kne between 0.027 (slip regime) and 0.22 (transition regime) 
is considered, where the continuum NS equations may be used, provided that slip flow condition is enforced at the 
wall. At lower values of Kn, up to 0.1, it is expected that the Maxwell first order slip flow condition is adequate 
[3, 4], for larger Kn second order slip boundary conditions (as suggested by Cercignani [9] and Diessler [10]) are 
applied and the Smoluchowski temperature jump boundary conditions: 
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where α = β  1.1 for a hard sphere gas [11, 12] and coefficients Av1, Av2, AT1 and AT2 are presented in Table 2. 

 
TABLE 2. Values of slip coefficients proposed in the literature. 
Source  Av1 Av2 AT1 AT2 
Maxwell 1 0 1.62 0 
Diessler 1 1.125 1.62 3.011 
Cercignani 1.1466 0.9756 1.62 -0.81 

 
The numerical method and treatment for the inflow and outflow boundaries for the Boltzamnn equation has been 

validated by comparison with results of Nance et al. [6], obtained by DSMC method, for a short microchannel with 
length of 5 µm and height of 1 µm and 30  84 nonuniform grid. The inlet temperature T0i is 300 K and equals Tw. 
Constant pressure ratio p0i/pe = 3.18 (Mais = 1.33) is assumed with Kne  0.05 (Knis = 0.04). The results for centerline 
streamwise velocity, static pressure and density from NS and Boltzmann solutions are presented in Fig. 1 (a, b, c). 
The kinetic results show satisfactory agreement with those of Nance [6], except the inlet region for streamwise 
velocities where the difference is larger. As expected, a comparison with continuum quantities demonstrates more 
noticeable discrepancies.  

 

  
(a)               (b)        (c) 
FIGURE 1. Centerline velocity, density and pressure along channel for the kinetic and continuum approaches and Kne = 0.05. 
 
In simulation, the geometrical symmetry allows for the discretization of just one half of the channel. A 

nonuniform structured grid 112 × 30 for the kinetic statement and 144 × 24 mesh for the continuum one are used. 
Grid independence tests have been carried out in order to assess the accuracy of the mesh. The velocity space is 
bounded by Vmax: - Vmax  ξ  Vmax and the step is ξ = 0.37. The decrease of ξ did not have a large effect on the 
flow pattern (error of 1%). The time step is restricted by CFL = 0.8 and the dimensionless time step Δt varies from 
2.5 × 10-3 to 3.5 × 10-3. The solution is considered as converged when the variation of the mass flow rate between 
entrance and exit regions is less then 1 %. The calculations were conducted using multicores system consisted of 2 
processors with 4 cores. The CPU time was about 360 h for fully developed flow (nondimensional time equals 80).  

The pressure ratio p0i/pe varied from 2.07 to 3.06 (see Table 1) for fixed Kne = 0.04 and 0.11 are considered. 
Fig. 2 (a, b) shows the averaged over cross section pressure and the Mach number distributions along the channel for 
the different inlet pressures and the constant Kne = 0.04 compared with results based on the NS equations with the 
first order slip boundary conditions and without (no-slip solution). As expected, for this Kne results obtained by the 
Boltzmann equation are close to ones of NS equation coupled with the first order slip boundary condition and 
deviate significantly from results of no-slip NS solution. The mass flow rate distribution demonstrates the same 
behavior (see Fig. 3 a). The magnitudes of the mass flow rate of the Boltzmann equation are close to ones of NS 
equations with the first order boundary conditions, while the solution of NS equations with no-slip boundary 
condition is quite different from both. For larger Kne = 0.11 second order boundary conditions for NS equations are 
applied. In Fig. 2 c averaged Ma and pressure distribution are compared with solutions of NS equations with the first 
order and second order Cercignani and Diessler boundary conditions. There is a clear difference between Ma 
distributions obtained from the solution of the kinetic equation and NS ones. Nevertheless, the difference in pressure 
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distributions is much less evident (see Fig. 2 d) since the compressibility effect, responsible for the curvature of the 
pressure profile, is of the same order of magnitude (as is the Mach number). 

 

       
      (a)          (b) 

       
     (c)          (d) 

 
FIGURE 2. Averaged Mach number and pressure distributions along the channel for the kinetic and continuum approaches, 

different inlet pressures and Kne = 0.04 (a, b), 0.11 (c, d). 
 
The mass flow rates for different pressure ratios obtained by both approaches are shown in Fig. 3 b. For larger 

Kne = 0.11 the difference between results computed by the Boltzmann equation and ones of NS equations with the 
Maxwell boundary condition becomes larger, approximately 15 %. Solutions with second order boundary conditions 
are closer to the kinetic one. The maximal deviation from the kinetic solution appears for large pressure ratio and is 
9% for Diessler boundary condition and 5.6 % for Cercignani one. 

 

      
     (a)               (b) 

FIGURE 3. Mass flow rates for the kinetic and continuum approaches, different pressure drops and Kne = 0.04 (a), 0.11 (b). 
 
The influence of rarefaction on gas flow is investigated. The computation is carried out for constant pressure 

deference 2.07 and the exit Knudsen number ranging from 0.027 (slip regime) to 0.22 (transition regime). 
Comparisons between averaged Mach number distribution of the Boltzmann solution and NS ones with first and 
second order boundary conditions are presented in Fig. 4 a. Results obtained by NS equations with first order 
boundary conditions agree well with Boltzmann ones until Kne < 0.11. The use of second order boundary conditions 
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gives distributions of averaged Ma well corresponding to the kinetic ones for all range of Knudsen. A comparison of 
the mass flow rates with the results based on the NS equation with the first and second order slip boundary 
conditions are shown in Fig. 4 b. For Kne < 0.11 the mass flow rate predicted by the Boltzmann equation is close to 
the predicted by the NS equations for both first and second boundary conditions, at least for any engineering purpose 
(for first order model the difference is negligible up to 0.055). For Kne ≥ 0.11 the difference becomes remarkable and 
growth with Kn. Although always underestimated the mass flow rates obtained by NS equations with second order 
either Cercignani or Diessler boundary conditions remain close to the Boltzmann solution even for Kne = 0.22. The 
obtained ranges of Kne in which slip boundary conditions models are valid agree well with those pointed out in [2].  

 

  
        (a)                 (b) 
FIGURE 4. (a) Averaged Mach number distributions along the channel for Kne = 0.027, 0.055, 0.11 and 0.22; (b) Mass flow 

rates via Kne compared with results based on NS equations with the first and second boundary conditions. 

CONCLUSIONS 

The numerical investigation of gas flow in microchannel based on the direct numerical solution of Boltzmann 
equation has been carried out. The numerical method and treatment for the inflow and the outflow boundary 
conditions have been successfully validated by comparison with DSMC method [6]. The comparison with the 
solution of the Navier-Stokes equations shows that the differences between those approaches are negligible up to 
Kne ≤ 0.055. Significant discrepancies appear and grow in transitional regime. However, while the first order 
boundary condition seems inadequate above Kne = 0.11, the use of second order boundary conditions offers 
reasonable engineering accuracy up to the transition regime, until Kne ≤ 0.22. Kinetic results, however, always 
predict higher mass flow rate.  
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