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Abstract. In this work, the effect of the gas-surface interaction law and of the intermolecular collision model is examined 
by solving, using the DSMC method, the heat transfer problem between parallel plates and the non-isothermal Poiseuille 
flow problem. In the former one the Cercignani-Lampis model is applied to analyze the influence of the gas-surface 
interaction parameters, while in the latter one a comparison between the results obtained by implementing the Hard 
Sphere, Variable Hard Sphere, Variable Soft Sphere and Maxwellian models is performed. Calculations have been 
carried out for several values of the Knudsen number, temperature ratio and Froude number. A comparison between the 
DSMC and the corresponding discrete velocity results yields very good agreement between the two approaches. Finally, 
the convergence behavior of a Bernoulli trials based scheme, which allows the use of a smaller number of particles per 
cell, and the No Time Counter are compared for different sampling sequences. 
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INTRODUCTION 

The DSMC method proposed by Bird [1] is used to study i) the one-dimensional heat transfer (Fourier flow) 
problem and ii) adding a force parallel to the walls, the Poiseuille flow with non-isothermal walls. The influence of 
the boundary conditions on the heat flux is analyzed for the Fourier flow problem by using the Cercignani-Lampis 
(CLL) model [2]. This model, compared to the well-known specular-diffuse reflection model, provides an improved 
physical meaning [3]. The implementation of the CLL model in the DSMC has been described by Lord [4]. A 
comparison between the DSMC and the corresponding discrete velocity results [5] in the whole range of Knudsen 
number is included.  

The influence of different intermolecular potentials (Hard Sphere, Variable Hard Sphere, Variable Soft Sphere 
and Maxwellian) on the calculation of the heat flux is analyzed for the acceleration driven flow between plates with 
non-isothermal walls. In addition, the effect of all the parameters involved in this problem (Knudsen number, 
temperature ratio and Froude number) is investigated.  

Finally, the convergence behavior of a Bernoulli trials based scheme, which has been previously used [6] for 3D 
calculations, is implemented. The behavior of this more advanced scheme is compared with the typical No Time 
Counter scheme and several sampling performances are included in a similar way as presented in [7]. 

PROBLEM FORMULATION 

Plane Fourier Flow 

The one-dimensional plane Fourier flow problem deals with the heat transfer through a gas confined between two 
infinite stationary parallel plates maintained at different temperatures. The plates are at y = 0 and y = L with 
temperatures TC = T0 (1 - T) and TH = T0 (1 + T) respectively as shown in Figure 1 (left). The initial state of the 
gas is in equilibrium at reference pressure and temperature P0 and T0, with a reference number density n0 = P0/(RT0) 



and a reference Knudsen number Kn0 = /L, where 0 is the mean free path, which is defined for hard sphere 
particles as 2 1

0( 2 )d n  , with d being the diameter of the particles and R the gas constant. 

To render the problem dimensionless, we normalize the position by L, the temperatures by T0, the velocities by 
the most probable molecular speed 

0 02 mv R T , the number density by n0 and the heat flux qy by (n0mv0
3). Here Rm 

is the specific gas constant and m is the molecular mass. 
 

 
FIGURE 1.  Schematic diagram of the plane Fourier flow (left) and non-isothermal Poiseuille flow (right) 

Plane Acceleration-Driven Flow with Temperature Difference 

The one-dimensional plane non-isothermal Poiseuille flow consists of the movement of a gas between two 
parallel plates maintained at different temperatures TH and TC due to the effect of a pressure difference along the 
channel. It can be described schematically also by Figure 1 (right), but adding a pressure difference parallel to the 
plates. The implementation of this flow was done considering a very short region of the parallel plates, so that we 
could assume that the pressure gradient in this region is constant, and with periodic conditions at the boundaries 
perpendicular to the walls in order to simulate a fully developed flow. The implementation consisted of an 
acceleration-driven flow, where a constant body force parallel to the plates (F = mg) acts on every particle of the 
domain. This acceleration can easily be related to the pressure gradient dP/dx by using the expression: 

 1 dP
g

dx
  (1) 

For this case we can obtain an additional non-dimensional parameter, the Froude number Fr = 
2
0v

g L
  

Cercignani – Lampis Boundary Conditions  

The Cercignani-Lampis model (CLL) is used in this work to compute the gas-surface interactions. The CLL 
model contains two adjustable parameters, namely the normal energy accommodation coefficient, n, and the 
tangential momentum accommodation coefficient, t. The first one, n, can range from 0 to 1 and is related to the 
part of kinetic energy corresponding to the normal velocity, while the latter,t, can range from 0 to 2 and is related 
to the tangential momentum. Besides, the tangential energy accommodation coefficient can be defined as t = t (2-
t). The scattering kernel consists of three parts, one for each of the velocity components, and represents the 
probability of a particle with incident velocity ’ to be reflected with .  

The implementation of the model in DSMC simulations is well described by Lord [4]. First, the components of 
the pre-collision velocity (’

x,’
y,’

z) are expressed in a local coordinate system parallel to the incident velocity 
vector of the molecule obtaining (u’,v’,0), where ' 2 2

x zu    and v’ = ’
y. The value in the local coordinate system 

of the tangential post-collision velocity components u and w can be sampled as follows:  
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The value of the normal velocity component v can be sampled:  
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It is important to mention that all velocities are referred to the most probable velocity at the wall temperature 2 wkT . 

Finally, the velocity vector is transformed into the global coordinate system. 



Molecular Interaction Models 

There are several collision models which describe different kinds of interactions between the particles. The 
inverse power law model is based on the assumption that the repulsive force between the particles is inversely 
proportional to 1/r. The dependence of the viscosity and thermal conductivity with temperature is proportional to 
Tω, where 

 1 1 3

2 2 1

 



  


 (4) 

According to this, the dependence is proportional to T1/2 and to T for hard sphere ( → ∞) and Maxwellian 
interaction ( = 5) respectively. One of the drawbacks of the HS model is that the cross-section is independent of the 
relative translational energy (Et) in the collision, which is not realistic. Therefore, a variable cross-section is required 
to match the powers of the order of 0.75 which are characteristic of real gases. 

This led to the definition of the Variable Hard Sphere (VHS) model which represents a hard sphere molecule 
whose diameter d is function of the relative molecular velocity cr. 
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where T,ref, dref and cr,ref are reference values. In the VHS model, the ratio of the momentum to the viscosity cross-
section follows the HS value. However, this is a deficiency because the ratio varies with the power law in the case of 
the inverse power law model, and the real gas values are different from HS values.  

This led to the definition [8] of the VSS model, where the deflection angle χ is given by: 

  
1

12cos b
d

      
 (6) 

The VSS model matches the HS model when  is equal to 1 and  is equal to 0 ( = ½). The reference molecular 
diameter is related by equation (7) to the reference viscosity for all the cases and it is defined by: 
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Here, the following expressions for the components of the postcollision relative velocity have been used: 
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RESULTS AND DISCUSSIONS 

Gas-Surface Interaction in the Fourier Flow 

The influence of the gas-surface interaction parameters involved in the CLL model on the heat transfer for pure 
planar Fourier flow is shown in Figure 2 for T = 0.1 and the HS model. In particular, the heat flux is plotted versus 
each accommodation coefficient, keeping the other constant and equal to unity. It can be seen that the influence of 
the accommodation coefficients is high for large Knudsen numbers, but lower when the Knudsen number decreases. 
This can be explained taking into account that as Knudsen is increased the collisions with the walls are dominant as 
the whole domain is contained within the Knudsen layers. The opposite happens when the Knudsen number is 
decreased and the collision between the molecules becomes more important than the collision with the boundaries. 

Besides, a symmetric dependence of the heat flux on t around t = 1 can be observed. This symmetry is 
understandable since in pure Fourier flow there is no macroscopic movement of the gas, where specular reflection 
has the same global effect as backscattering. On the contrary, the heat flux increases monotonically with n. 

In addition, calculations of the heat flux for the plane Fourier flow for diffuse boundary conditions were carried 
out in order to compare the DSMC results with those obtained using the discrete velocity method [5]. The 
simulations were done for different rarefaction conditions, from the free molecular regime until the continuum flow 



regime, and for the case of T = 2 (TH/TC = 3). The results are shown in Table 1 for different Knudsen numbers. The 
results between both approaches are in very good agreement. 
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FIGURE 2.  Heat flux dependence on the tangential momentum accommodation coefficient t keeping n = 1 (left) and on the 

normal energy accommodation coefficient n keeping t = 1 (right).  
 

TABLE 1.  Heat flux in the whole range of rarefaction and T = 2 (TH/TC = 3) obtained by DSMC and DVM. 

1

2 Kn

  0.0 0.15 1.5 15 150 

DSMC 2.534·10-1 2.373·10-1 1.674·10-1 4.891·10-2 6.214·10-3 

DVM 2.534·10-1 2.371·10-1 1.662·10-1 4.837·10-2 6.015·10-3 

Molecular Interaction Models in the Poiseuille Flow with Heat Transfer 

In Figure 3 temperature distributions between the plates are shown for various flow parameters. In each case 
results for all four implemented potentials are provided. It is seen that in each of Figures 3a, 3c and 3d, with Kn = 
0.1, the corresponding temperature distributions are very close. Significant differences appear only for Kn = 0.01 
(Figure 3b), as the intermolecular collisions become predominant over the collisions with the walls and the flow 
velocity increases when the Kn is decreased and the Fr remains constant. 
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FIGURE 3.  Temperature dependence on the chosen molecular interaction model for the shown values of Kn, Fr and TH/TC. 
 

a) b) 

c) d) 



Also by observing Figures 3a, 3c and 3d, where the Knudsen number is the same, the effect of changing the 
temperature ratio and the Froude number can be examined. More specifically, at higher temperature ratio and Froude 
number (Figure 3d), the temperature distribution is monotonic while, as the temperature ratio and the Froude number 
are reduced, it becomes non-monotonic with a peak close to the hot wall (Figures 3a and 3d). 

The corresponding results for the heat flux are shown in Figure 4. As expected, the heat transfer increases when 
the temperature ratio increases. It can be seen that in Figure 4c the heat flux is always negative, while in Figure 4a is 
positive in part of the domain. This is explained by monitoring the corresponding temperature profiles. The 
influence of the Froude number can be analyzed by comparing Figure 4c and 4d. When the Fr is decreased, the heat 
flux in the central region of the domain is slightly increased as well as the difference between the heat flux in the hot 
and in the cold wall. Regarding the role of the applied intermolecular model, its influence is negligible at high 
Knudsen. In general, the differences in the results for the various models increase as the Knudsen number decreases 
and the temperature ratio increases. The differences between the models appear to be larger in the central region of 
the channel in the temperature profiles, while for the heat transfer a bigger difference is seen near the walls. The 
largest discrepancies appear between the HS and Maxwellian models, with the Maxwellian model being the one 
which produces the highest value for the heat flux. The differences between the VHS and VSS models are quite 
small for the cases analyzed in this work. 
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FIGURE 4.  Heat flux dependence on the chosen molecular interaction model for the shown values of Kn, Fr and TH/TC.  

No Time Counter and Bernoulli Trial Schemes 

The convergence behavior of a Bernoulli trials based scheme [6] is investigated for different sampling 
performances and compared with the widely used No Time Counter scheme (NTC) proposed by Bird [1].  

In the NTC scheme the maximum number of collision pairs is calculated at the beginning and then pairs are 
selected randomly and the collisions are computed with a certain probability. Instead, in the Bernoulli Trials based 
scheme (BT) all possible collision pairs within the cell are chosen to be collided with a certain probability which is 
proportional, as in the case of NTC, to the total cross section and the relative velocity. By computing all possible 
pairs, the repeated collisions, which can lead in certain conditions to wrong results, are avoided. The computational 
cost of the BT scheme is proportional to N2, being N is the average number of particles per cell, in contrast to the 
NTC scheme with proportionality to N. However, the BT scheme allows the use of a small number of particles per 
cell, keeping the same accuracy as the NTC scheme. Furthermore, in order to allow collisions between particles of 
neighboring cells, a dual grid was introduced. The binary collisions in each cell are calculated in the original 
grid for a time interval t/2 and then in the shifted grid – shifted x/2 in x- and y-direction – for the other 
t/2 without moving the particles. Then all the particles in the domain are moved at a distance proportional to 
their new velocities without colliding during t. 

a) b) 

c) d) 



In this section, three different sampling performances were analyzed for each scheme:  
- For the NTC scheme collision-sample-move (CSM), collision-move-sample (CMS) and collision-sample-

move-sample (CSMS). 
- For the BT scheme collision1-collision2-move-sample (C1C2MS), collision1-collision2-sample-move 

(C1C2SM) and the symmetric collision1-sample-collision2-move (C1SC2M). 
The study case chosen for this aim was the Fourier flow defined above with purely diffuse walls and with 

reference pressure and temperature of the hard-sphere-like gas P0 and TC and with T = 0.1T0. The reference 
Knudsen is Kn0 = 0.09 and the reference heat flux for these cases is qref = n0mv0C, where 

0 2C m Cv R T . 

The results presented here represent the time discretization errors of the different schemes for two different 
values of the mean number of particles per cell. 
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FIGURE 5.  Heat flux versus time step for the different schemes (NTC and BT) and sampling procedures. The simulations were 

performed dividing the domain in 200 cells and using (left) 50 and (right) 2 particles per cell as average. 
 
The results presented show the dependence of the heat flux on the selected scheme. When the average number of 

particles per cell is big enough (Figure 5 left), the behavior of both schemes (NTC and BT) are very similar. With 
two of the methods, NTC with double sampling (CSMS) and BT with symmetric sampling (C1SC2M), the heat flux 
deviates slightly from the converging value when the time step is increased. The value of the heat flux is 
overpredicted for the BT with symmetric sampling, while for NTC with double sampling is underpredicted. For the 
other four DSMC models the heat flux converge to the same value as the previous methods for small time steps, but 
it deviates significantly when the time step increases.  

However, if the average number of particles per cell is drastically reduced (Figure 5 right), it turns out that only 
the BT scheme with symmetric sampling can cope with a very low number of particles per cell and the increase of 
the time step. The NTC with double sampling gives the same value of the heat flux for small time steps, but they 
deviate when this time step starts increasing. The other single-sampling methods describe a similar but more 
pronounced tendency as with using a large number of particles per cell. 
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