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This paper presents a receding horizon planning algorithm for vision-based navigation
using bearings-only SLAM that adapts the planning horizon to the velocity of the in-
formation gained about the environment. Bearings-only SLAM has an inherent dynamic
observability property such that specific motion is needed in order to determine the rela-
tive positions between the camera and obstacles. Thus, the estimates of new obstacles are
always highly uncertain and information about the obstacles is dependent on the relative
motion between the camera and objects. Receding horizon planners are typically used in
conjunction with SLAM algorithms because they continually adjust to new information
about the world. We present a receding horizon planner that incorporates information
metrics explicitly into the receding optimization cost function. Furthermore, an adaptive
horizon is used based on the intuition that when the information about the world is rapidly
changing, planning does not need to be too long. Control and planning horizons are com-
puted based on the sensor range and the effective speed of the UAV, which is computed as
a weighted sum of estimated vehicle speed and time rate of change of the uncertainty of the
obstacle position estimates. Simulation results demonstrate the integrated receding hori-
zon system for vision-based SLAM; illustrate the value of integrating information-theoretic
costs into the objective function and the adaptive approach; and extension of the planning
approach to other applications such as exploration, target intercept, and cooperative active
sensing.

I. Introduction

Successful operation of small unmanned aircraft (wingspan<b5 feet) in obstacle strewn environments (such
as mountainous terrain, forests, or urban areas) requires integrated sensing and control strategies for obstacle
detection, obstacle avoidance and navigation that consider the complexities of the entire UAV system. Small
UAVs undergo 6 degree of freedom motion, are subject to significant external disturbances, require high
bandwidth control, have limited on-board sensing due to small payload capacities, and operate in a highly
dynamic environment.

Fusing computer vision data with measurements from inexpensive inertial measurement units (IMUs)
provides a navigation solution that satisfies the limited payload and energy capacities of small unmanned
aircraft, provides an information-rich stream of data which is useful to a human operator, can be used for
obstacle detection, and can be used in cases where GPS is unavailable due to obstructions or jamming.':2
While stereo camera configurations provide both range and bearing to features, vehicle dimensions impose

* Assistant Professor, Aerospace Engineering Sciences, eric.frew@colorado.edu, ATAA Member.
T Assistant Professor, Aerospace Engineering, jlangelaan@psu.edu, AIAA Senior Member.
fGraduate Research Assistant, Aerospace Engineering Sciences, maciej.stachura@colorado.edu, Non-Member.
Copyright (© 2007 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc. with
permission.

1 of 20

American Institute of Aeronautics and Astronautics Paper 2007-6749



limits on the baseline between cameras and thus range accuracy. By using a monocular camera one can
obtain bearings to fixed landmarks. By fusing bearings to these fixed landmarks (whose positions may
be initially unknown) with data from the low-cost IMU we can obtain a localization solution both for the
UAV and for the landmarks. This is known as Simultaneous Localization and Mapping (SLAM), sometimes
referred to as Concurrent Localization and Mapping.

In contrast to many SLAM applications that use both range and bearing measurements®* the vision
system in the application considered here only provides a bearing measurement to each landmark. This
provides unique challenges to the sensor fusion system, including: limited observability of states, which
results from having only inertial and bearing measurements available; increased effect of non-linearities in
the measurement model, which results from the close proximity of the vehicle to the objects; and finally
significant uncertainty in the predicted vehicle state, which results both from the measurement noise and
drift error induced by the low cost IMU and the likelihood of significant external disturbances. In previous
work we described an implementation based on an Unscented Kalman Filter (UKF), demonstrating successful
mapping and navigation through an obstacle-strewn environment.!

The interdependence between planning and estimation in SLAM and related applications such as target
tracking has long been recognized.® ¢ The potential for improved state estimates which result from increasing
the “look-ahead” distance been demonstrated,”® but increasing the look-ahead for planning inevitably results
in increased computational load.

Receding horizon control (RHC) has been used very successfully for control of unmanned aerial vehicles,
especially in the context of obstacle avoidance.'®'2 The limited planning horizon and successive re-planning
offers a built-in means of responding to a dynamic environment and serves to reduce the computational load
associated with planning. However, the previous research has generally assumed that obstacles are localized
perfectly as soon as they enter a local detection region.

Receding horizon control can be augmented to include the output of vision-based estimation.'® ! This
can consist of a learning algorithm that combines feature points into a terrain map of the environment!!
or inclusion of the estimate covariance matrices as extended obstacle boundaries.'® In previous work we
developed an RHC controller for passive, non-cooperative see-and-avoid that was independent of the specific
implementation of the vision-based estimation.!? 13

RHC approaches naturally raise a question of the optimal length of the planning horizon. In previous
work we combined vision based estimation and RHC with an adaptive planning horizon.'® The planning
horizon was computed based on the rate of change of uncertainty of surrounding obstacles: in a fast-changing
environment plans quickly become obsolete, hence computation spent on long planning horizons is likely to
be wasted. In this paper we further develop the adaptive receding horizon control by evaluating the tradeoff
between final trajectory cost and total computational effort for several different mission scenarios. Results
show that the adaptive approach provides a balance in terms of computational effort between short and
long (fixed ) planning horizons while yielding better overall performance in terms of the final trajectory cost
compared to either fixed case.

The remainder of this paper is organized as follows: Section II describes the vision-based navigation
problem; Section III discusses dynamic observability and rates of change of information gain; Section IV
summarizes the adaptive RHC controller; Section V provides simulation results; and conclusions are presented
in Section VI.

II. Vision-Based Navigation

The concepts developed in this paper are motivated by navigation of a small UA through an unsurveyed,
cluttered environment such as a forest (Fig. 1). An on-board camera provides bearings to obstacles and an
inertial measurement unit provides accelerations and angular rates in the body frame. The problem is to
navigate from a known start position to a known goal position without the aid of absolute position sensors
such as GPS and without an a priori map of the forest.

The block diagram in Fig. 2 shows a system that uses the given sensors to perform obstacle avoidance.
UA guidance is achieved by combining a high-level adaptive receding horizon trajectory generation algorithm
with a low-level flight control system that directly controls the aircraft actuators. The trajectory generation
and flight control algorithms are fed state variable estimates derived from the vision and inertial sensors.

Given noisy, biased measurements of acceleration and angular rate (from the IMU) and noisy mea-
surements of bearings to obstacles (from the vision system), an estimator based on an Unscented Kalman
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Figure 1. The navigation scenario. The grey region shows the field of view of the vision system, obstacles are
show by green dots
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Figure 2. Navigation system schematic.

Filter'* 15 was designed to compute vehicle state x, (which includes position in the inertial frame; orien-
tation with respect to the inertial frame; velocity expressed in the body frame; and IMU biases), obstacle
positions x, (in the inertial frame) and the associated covariance:!2

P’U’U P’UO

1
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The covariance is a measure of the uncertainty in the estimated states. The observability of the state
estimation, its dependence on vehicle motion, and the implications for adaptive RHC are discussed in Sec-
tion ITI.

UA guidance is achieved using an adaptive receding horizon control policy based on the controller de-
scribed in earlier work.'% 13 A key feature of this RHC policy is the ability to consider the information gain
(i.e. reduction in uncertainty) of the obstacle positions over the planning horizon. The method presented
here optimizes the control sequence that is fed directly into the guidance control layer of the aircraft flight
control system, eliminating the need for a path or trajectory tracking controller. The trajectory generator
assumes the low-level flight control system provides the ARHC controller with the standard kinematic model
given in discrete form as:

Tht1 xp + uy - T - sinc(¢) cos(Y + @) Vmin < U1 < Vg
Yre1 | = | yr s Ty - sine(d) sin(¢y + o) (2)
wk+1 wk + ug - Ts |u2| < Wmaa

where u is the aircraft speed command, us is the turn rate command, v,,;, and v,,,; are bounds on
airspeed, Wyqe 18 the maximum allowable turn rate, ¢ = 0.5 - ug - Ts, T is the sample time, and sinc(x) is
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the sine cardinal function

sin(x) T # 0
sinc(x) = z 3
® { o 3)
The measurement model is
2k,; = arctan (yl Yk ) — g + g (4)
T; — T

Receding horizon control is an optimization-based method that seeks to minimize some objective function
continually over a finite control horizon. Let uy p+7 = [ug, - -, up4r] be a control sequence of length 7'+ 1
starting at discrete time k. Furthermore, let Jypc(Xg, g k1) be an objective function evaluated with the
current state xj at time k£ and control sequence uy, ;7. The main steps of the RHC approach are

1. Calculating the optimal control sequence

UZ,HT,I, = [ug, -+, UZ+Th] = argmin Jype(Xg, U k+7), (5)

starting from state xj, over a finite planning horizon 2 < T}, < oo;
2. Implementing the optimal control input over some control horizon k <t < k + T, where 1 < T, < Ty;
3. Repeating steps 1 and 2 for x,47, at time k + T¢.

The RHC algorithm casts navigation into a deterministic, relative problem in order to simplify analysis®.
First, the certainty equivalence principle is invoked in order to use the current estimate of the UA state and
obstacle positions in the optimization process. This enables minimization of a deterministic cost criterion
as opposed to minimization of the expectation of a stochastic process. Second, the uncertainty in the UA
state and object positions is transformed into a measure of the uncertainty of position X,c;; = X, — Xo,i
of each object relative to the UA. This is accomplished by calculating the new covariance matrix Py ; =
Py +Pooi —Ppoi— Pgo’i, where P, is the covariance of the position components of the UA state estimate,
P,,,i is the covariance of the ith obstacle position, and P, ; is the cross correlation between the UA position
and the obstacle position. For the goal node, the UA position uncertainty is used to define a terminal
set, as opposed to a single terminal state. Finally, safety is encoded by prohibiting UA motion within
some uncertainty ellipsoid defined by P,.; ;. The shape of this ellipsoid is defined by P,.;; and its size is
determined by a desired level of confidence.

The RHC algorithm used here minimizes the objective

JT'}LC()A(ky uk,k-{-T) - Ju + Jnav + Jinfo + Jsafe- (6)

Given a vector y € R" and matrix M € R"*" let ||y||3; be the M-weighted 2-norm of the vector, i.e
llyll3; = y'My . The control cost J,, and the navigation cost J,,4, are the standard quadratic cost functions

k+T},
Ju (U k+1) Z [ (7)
k+Th
Jnav(ﬁk’v uk,k—i—T) = Z ||p1 pgoal”wnav + ”pk-‘rTh pgoalH%Vgoaz (8)

where W, = Wy-I, Wyao = Whao oL, and W goa1 = Wyoai -1 are positive-definite weighting matrices, f)k is the
position component of the aircraft state estimate, p goal 18 the current goal location, and Xgyq,1 € [ -, 1]
is calculated from Equation 2. The information cost Jinf, encourages the UA to improve its knowledge of
the state of the IV obstacles observed in the environment

k+T, N

Jinfo(Xn, W k1) mfo 533

i=k j= 177,431

9)

2The “adaptive” portion of ARHC comes from a computation of the planning horizon T}, based on vehicle speed and the
rate of change of uncertainty. This is described in Section IV.
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where 774 ; ; is a measure of the expected information content in future measurements. Details on the function
7a,;,; are provided in Section III.

Finally, the safety cost J,qfe enables the RHC controller to perform obstacle avoidance. Rather than
include obstacle avoidance as a constraint, we use a penalty function in the optimization objective function.
This leaves the control limits as the only constraints to the optimization problem. For the work presented
here we consider only obstacles with circular or elliptical shape. If the j** obstacle is located at position Po.j
then the safety cost is given by

k+T, N

Jsafe(ﬁh uk,k+T) = Wsafe ' Z Zb(”f’l - IsO,jH%/Ivrbarrier) (10)
i=k j=1

The function b(x,r) is the barrier function

b(x,r):{m'(r_x) T (11)

0 x>

where m > 0 is the slope of the barrier function. This value is typically set to m = 1 and the weighting
parameter W, is used to set the steepness of the barrier. Setting M = 1 (the identity matrix) in Equa-

tion 10 yields circular obstacles with radius rperprier. Alternatively, setting M = ?;ell, .k to the inverse of the
approximation of the obstacle position error covariance matrix yields an elliptical confidence region defined
by the parameter rpq;rier- In this case the weighted norm in Equation 10 corresponds to the Mahalanobis
distance between the target and the aircraft position estimates. In order to predict the evolution of the
target estimate we assume an idealized (efficient) version of the bearings-only sensing problem. We use the
Fisher Information Matrix Ir (see Section III) to describe the information gained about an obstacle: by
assuming the target estimate is exact over the finite planning horizon and assuming exact knowledge of
aircraft motion'® we can calculate

ﬁrel,]}k = I;ulj’k- (12)

Figure 3 shows an example simulation run using the RHC approach without the information cost term.
The solid line represents the actual path of the aircraft, the dotted line represents the estimated path, and
the dashed line represents the predicted future path over the planning horizon. The black cone represents
the field of view of the UA camera and the red line denotes the planning horizon.

A. RHC and ADP

Receding horizon control is an example of the broader class of model predictive control (MPC) algorithms.
Bertsekas draws strong connections between MPC and approximate dynamic programming (ADP), essen-
tially showing that both concepts are based on the dynamic programming idea of policy iteration and
rollout.*®  Although the stability of MPC has been addressed extensively in the literature (c.f 17), we use
the language of ADP here in order to motivate the use of adaptive planning and control horizons.

Consider the discrete time dynamical system whose state vector evolves according to the equation

X1 = f(Xk, U, W) (13)

where k is the discrete sample time, x; € X is the state vector constrained to some finite set, u, € Uy is
the vector of control inputs selected from a finite set, and wy, is a random disturbance. Starting at the state
X1, the general dynamic programming problem is to find

Ji (k) = min Jg(xg) (14)

u; eU;
where

N-1
Jp(xp) = E { Z gi(Xi, 03, W;) + gN(XN)} (15)

i=k
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Figure 3. Example simulation run using ARHC. The solid line is path flown, solid circles are obstacles, and
ellipses show estimated obstacle positions.

is the cost-to-go function for the problem with g;(x;,u;, w;) representing the cost incurred at each stage
(over each discrete time interval). One of the key concepts of dynamic programming is the recognition that
the optimal cost-to-go function Equation 14 satisfies the recursion

Je(xx) = min B {91 (%ns wr, wi) + Ty (fr (%, up, wi)) } (16)
with the initial condition J5 (xn) = gn(xn).

In practice, solving the stochastic optimization of Equation 16 with imperfect state information and
random disturbances is computationally prohibitive and suboptimal approximations are applied. In order to
replace the stochastic problem with a deterministic one the certainty equivalence principle is often invoked to
replace the imperfect state with its estimate and to use a nominal value for the disturbance (which we take
to be zero here). Further, an implicit cost-to-go approzimation is used to substitute Jgy1(fr (X, U, wg)) in
Equation 16 with the function jk+1( fr(Xk, ug, wy)) computed online from some heuristic/suboptimal base
policy. Thus the new problem becomes solving

Je(e) = min g (Reyw) + Tt (e o)) (17)
at each stage.

Comparing Equation 17 to the Equation 6 - Equation 10 we see that the receding horizon control objective
function has the same form as the approximate cost-to-go function with

k+Th
i1 (Rie1) = { > Grned(iw) + Jctg(fikJrTh)} - (18)
i=ht1

This corresponds to multi-step look ahead where jctg(f(k+Th,) is the approximately cost-to-go function which
corresponds to the (infeasible) base policy of “heading toward the goal in a straight line”.

Convergence of ADP (and stability of RHC) is dependent on an assumption of cost improvement, specif-
ically that

Ji(Xx) > min [gk(fik,uk) + jk+1(fk(5<k,uk))} : (19)

u; c€U;

6 of 20

American Institute of Aeronautics and Astronautics Paper 2007-6749



This assumption puts constraints on the RHC problem. For example, the implementation described here
cannot properly account for dead-end paths and must assume obstacles can be avoided individually. Fur-
thermore, when an approximate cost-to-go function satisfies Equation 19 the actual cost J(xy) obtained as
a result of solving Equation 17 at each stage k is bound by the approximation, ie.

Tr(xi) < Ji(Rp). (20)

Thus, the closer Ji(Xy) is to the optimal cost J;(%y), the better the final trajectory.

Although the result of Equation 20 may seem intuitive, it has important ramifications since Jy (Xk) is
computed online and we never know how closely it approximates J;(Xx). Instead, we will infer properties
of jk(f(k) based on our perception of the environment and the uncertainty in that perception. In particular,
when the environment is changing rapidly we have no reason to assume that the projected stage costs at
some future time will reflect the true cost of the stage. This suggests that the length of the planning horizon
should depend on how quickly the environment changes.

Even though the RHC approach calculates plans over a finite time horizon, computational cost is a
major barrier to implementation on many systems. In order to calculate the optimal control input, the RHC
trajectory generator must simulate the dynamics of the system for every candidate output it evaluates. For
vision-based navigation in 2D that includes 10 vehicle states and 2N obstacle states. In order to minimize
the computational effort spent planning useless segments of the local path, the control and planning horizons
are adapted to the average uncertainty of the obstacle estimates (see Section IV). When the time rate of
change of the average uncertainty is low, likelihood is higher that the world will remain relatively static
over the planning horizon. Likewise, a high time rate of change in the average uncertainty implies that the
world will change significantly over a shorter planning horizon and thus much of the path will be useless.
Shortening the planning horizon during periods of high change in uncertainty also frees more resources for
the estimator to process information.

III. Dynamic Observability, Active Sensing, and Information Acceleration

A fundamental characteristic of vision-based localization and mapping is the dependence of the observ-
ability of the system states on motion of the camera (i.e. the trajectory flown by the UA). During motion
directly towards or away from an object (along the bearing) there is no new information to improve the
range estimate. Thus, transverse motion is required to produce a useful estimate of object position. In the
case of obstacle avoidance, transverse motion has the added benefit of ensuring that a collision is avoided,
but the presence of multiple obstacles places conflicting demands on the trajectory which must be flown.

In general, this dependence of estimation performance on system inputs is referred to as dynamic observ-
ability and forms the basis of active sensing. The main goal of active sensing systems is to choose the inputs
(e.g. UA motion) that optimize estimation performance. Inputs which optimize estimator performance are
found by maximizing some scalar measure 7 of the Fisher Information Matrix (FIM) Ig; which is equivalent
to the inverse of the Posterior Cramer-Rao Lower Bound,!® i.e.

IE’lk =Pcripr < P (21)

The FIM represents the sensitivity of the estimation process at a given point to the unknown parameter.
Better sensitivity means a measurement is more likely to add new information or reduce the uncertainty of
the unknown parameters.

Consider a discrete time nonlinear estimation problem. Let the state vector xj evolve according to the
state equation Equation 13 where the noise wy, is zero-mean, spatially uncorrelated, white Gaussian process
noise with covariance matrix E[wkch] = Qx. Furthermore, let zj; denote the ith measurement of the
system with

Z,i = hi(Xg, u) + Vi (22)

where vy, is zero-mean, spatially uncorrelated, white Gaussian measurement noise with covariance E[vy, ;vi | =
Ry ;. The FIM for this system can be recursively calculated as'®

—1
Iy = [(I’k—llg,lk—l(}z—l + I‘k—lqk—lI‘Z—l} + Lk (23)
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I.,=F ZHf)iR,zin,i] (24)
=1
of

P, = (TX(Xk,uknO) (25)
of

I, =— 2

k 5W (Xk7 Ug, 0) ( 6)
oh

Hk,i = &(xlm Ug i, O) (27)

where @5, I'y, and Hy,; are the linearized state transition matrix, noise input matrix, and measurement
matrix respectively; n refers to the number of independent sensors measuring the system; and the expectation
in Equation 24 is over the unknown system states. The recursion is initialized by the inverse of the covariance
matrix

Ip0="P;". (28)
The active sensing literature contains several popular choices for the scalar function including

1. The D-optimality (determinant) criterion

np(Ipk) = det(Ipy). (29)
2. The A-optimality (trace) criterion

Na(Ipy) = trace(Ip ). (30)
3. The E-optimality (eigenvalue) criterion

neXrk) = Amin(Lrk)- (31)

where Ay, (M) is the minimum eigenvalue of the matrix (M). For simplicity we will write 174  to represent
na(lpk).

Dynamic observability can now be restated as the dependence of the scalar criterion n (which we will
refer to as measures of the information gained by the system) on the system state and the system input (and
additional nuisance parameters like target motion that cannot be controlled). As a result of this relationship,
the time rate of change of the optimality criteria varies with time and the estimation system has state- and
input-dependent information acceleration, i.e. Mg = f(nk, Tk, ux). In contrast, the FIM for a linear system
is a function only of the initial estimate error covariance and the system matrices and thus 7, = f(zq, Po)-

Figure 4 shows the information and its velocity and acceleration for a simple BOT example.?’ Two UA
start at the origin moving with velocities [10, 0] m/s and [0, 10] m/s. They take bearing measurements
of a stationary target located at [500, 500] m. The plots show the information (and rates) using the three
different optimality criterion (Equation 29 - Equation 31 ) and for estimation based on measurements from
the first UA only and from both. The open circles represent the closest approach point (CAP) of each UA
to the target and the corresponding measurements of information (and rates) at that time.

The simple BOT example shows several important results. (Note, comparison of the magnitudes of
the information and information rates across different criteria is not meaningful since they have varied
interpretations.) As expected, information increases throughout the simulation (i.e. the information velocity
is always positive) since the targets are always in view and there is no uncertainty in their motion (they
are static). Likewise, for a given optimality criterion information is gained at a faster rate for cooperative
estimation compared to the single-vehicle case. In every case the information velocity and acceleration peak
when the vehicles are at or just past the closest approach point, which occurs at t = 51.0s for both examples.
In all cases the information velocity decreases after some point and the information metric flattens.

The results have several implications for navigation and choosing the planning horizon. From the ARHC
planner’s perspective, an uncertain obstacle is treated the same as a large certain one. Thus, the magnitude
of the information matrix (and the target uncertainty) is not as important as the information rate. When
the information velocity is large the planner can reasonably expect the world to change significantly while it

8 of 20

American Institute of Aeronautics and Astronautics Paper 2007-6749



1200

1000

800

600

Ypos [m]

400

200

UA Paths

CAP.

T
® Target

UAL

UA2

I
1000

0.035

0.03

0.025

0.015

0.005

Information Cost vs. Time

Je-1UA
Jd-1UA
Ja-1UA
_ 7 | = = —Je-2UA|

- Jd-2UA

- — — —Ja—2UA

40 60 80 100 120

o 400 600 800 1200 0
Xpos [m] time [sec]
(a) Schematic (b) Minfo
X 10" Information Velocity vs. Time X 10" Information Acceleration vs. Time
6 T T T 10 T T T
Je-1UA| , 7 Ta Je-1UA|

mk)ldt
w

J

Jd-1UA|
Ja-1UA|
— — —Je-2UA

Jd-2UA[]
— — — Ja—2UA]

40 60
time [sec]

(C) 'r.h'nfo

I
100 120

-2

Jd-1UA|
Ja-1UA|
v — — —Je-2UA|
\ Jd-2UA]
v — — —Ja-2UA|

20

I I
40 60 80 100 120
time [sec]

(d) ﬁinfo

Figure 4. Information, information velocity, and information acceleration versus time. Note that sensor field
of view is 360 degrees, hence the target is always in view.

plans, so computation far into the future is useless. Furthermore, the information velocity itself is dynamic
and changes as the system evolves. Therefore a specific fixed planning horizon (e.g. short for situations with
large information velocity or long for static environments) would not always be appropriate. Finally, the
results show that the A-optimality criterion is intuitively the most appealing, since information velocity peaks
at CAP. This is ideal for the planning horizon computation since we can start planning longer trajectories
as soon as we pass an obstacle.

It is important to note that the Fisher Information Matrix and Cramer Rao Lower Bound are calculated
based on the true state variable, which in practice is never known. Thus, the planner creates an estimate I
of the FIM based on the state estimate x;. Furthermore, calculation of the FIM for the full SLAM problem
is computationally prohibitive so we calculate the FIM for a simplified bearings-only problem that decouples
the FIM of each individual obstacle. In particular, we assume the vehicle knows its state exactly and only
consider the relative position between the aircraft and each target. We assume a static target (®y; = 1
and Qy ; = 0), measurement of the target bearing with noise variance E[v®] = o3, and initial information
given by the inverse of the relative position covariance P,.; ;. If the planner is evoked at time k with state
estimate @y, then the (estimated) FIM for the i* obstacle at time k + ¢ with ¢ € [1,T},] is
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ktt Ey ) 22 D
= -1 7207 72,07
;= . P ~ A
Ika""t” PTGUCJ + Z [ __cosB;isinb; cos® 0, (32)
j=k+1 Piiag fiicrg

where éj,i and 7;; are predicted estimates of the relative bearing and range from aircraft to target, re-
spectively. Finally, the A-optimality criteria for the entire forest is calculated by summing the trace of
each individual FIM (this is equivalent to the trace of the larger matrix with individual FIMs as diagonal

elements)
N

N
Nak+t = Z trace(Ippt,i) = ZﬁA,k-&-t,i (33)
=1

i=1

IV. Adaptive Planning Horizon

The main motivation for adaptive receding horizon control is the fact that dynamically observable systems
exhibit information velocity and acceleration. From the perspective of a planning system, obstacles with large
uncertainty can easily be treated as larger objects and with the reduction in obstacle position uncertainty
more efficient trajectories can be planned. Information velocity and acceleration imply that the state of
the world will change significantly over the control horizon of the receding horizon controller. Planned
trajectories may quickly become invalid (or unnecessarily conservative, and thus expensive) as knowledge of
the surrounding obstacles improves. Thus, adapting the planning horizon to the information velocity seeks
to minimize the amount of computational resources devoted to portions of a plan that will never be used.

For the algorithm presented here, the control and planning horizons of the RHC policy are adapted to
the state of the aircraft and the time rate of change of the obstacle estimates. A re-plan is triggered by one
of two conditions: (a) a new obstacle comes into view; (b) the end of the control horizon is reached. The
control horizon is defined to be a fixed fraction of the planning horizon, i.e. T, = f - T}, with 0 < f < 1.

The appearance of a previously unseen landmark triggers a re-plan of minimum time horizon. Otherwise
the planning horizon is computed based on the sensor range and an effective vehicle speed:

rsense Tsense
Tplan,k = max | wy , Wo—— . (34)
Ueffk ([

Here 7gense is the range of the vision sensor, ucsfx is an effective speed (defined below), 4y is the current
estimate of vehicle speed and wj 2 are weights with w; > 1 and 0 < wy < 1. Choosing w; > 1 gives the
UA extra time to plan motion around obstacles in its vicinity and ws defines the minimum planning horizon
using the current estimate of vehicle speed and sensor range.

The effective speed uey 1, is a combination of estimated vehicle speed and a measure of the rate of change
of uncertainty in the obstacle position estimate. It is a heuristic based on the intuition that rate of change
of uncertainty has the same dimension as vehicle speed:

Ueffk = Uk + wg% trace(P,.¢;) (35)
Here P, is the relative position error covariance for the obstacles (i.e. the uncertainty in the obstacle position
relative to the aircraft) and ws is a weight. Hence effective speed contains both the estimated vehicle speed
iy and the average rate of change of the uncertainty of estimated obstacle positions: it captures both how
quickly the vehicle is moving and how quickly the knowledge of the environment is changing. A large rate
of change of obstacle position uncertainty implies that the estimated state of the world will be significantly
different at the end of the planning horizon and thus the resulting plan will not be optimal that far into the
future.
Recall that obstacles are assumed to be stationary. Hence the position estimate and associated covariance
of any obstacle that is not currently in view of the sensor will not change: only obstacles in view will contribute
to the time rate of change of position covariance. Therefore

d
ax/trace(Prel) <0 (36)
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unless a previously unseen landmark appears in view. In other words, information about obstacle positions
is not lost. Thus choosing w3 < 0 ensures that wueyfr > Ug. Clearly choosing ws = 0 results in a planning
horizon which does not adapt to changing landmark uncertainty but plans with minimum horizon if a new
landmark appears and maximum horizon if the end of the control horizon is reached.

V. Results

This section presents simulation results investigating effects of the adaptive time horizon on the per-
formance of the resulting trajectories. In previous work we investigated the computational aspects of the
adaptive receding horizon controller in the context of a single navigation scenario,'® while here we look at the
trade off between computational time and final cost for several different scenarios that include navigation,
exploration, target intercept, and cooperative tracking.

For all cases the control horizon is fixed at 20% of the planning horizon. Vehicle speed was 10m/s and
maximum turn rate was 1.0 rad/s (this represents a 45 degree bank angle for an aircraft in coordinated flight
and results in a minimum turn radius of 10m). Sensing range on the camera is 50m, field of view is 100
degrees, and the bearing measurement noise variance is o, = 0.0lrad. IMU measurements are collected at
20 Hz while vision measurements are taken at 2 Hz. The simulation itself is integrated at 20 Hz although
the sample time used by the ARHC planner is the vision rate of 2 Hz. Optimization of the ARHC objective
function is performed using sequential quadratic programming (the fmincon function in Matlab) from an
initial condition determined by random search.!® Figure 3 shows an example trajectory through the forest.

Since the time horizon over which the ARHC objective function is evaluated changes due to the adap-
tation, we scale the control, navigation, and information costs by the number of discrete stages within the
planning horizon. In other words,

T, T. T.

W, = T—Ii ’ Wu,O Whav = Ti}sl . Wn(w,O Winfo - T—Z . Wi"fo,o (37)
where T}, is the planning horizon, T is the sample time (0.5 s in our case), Wy o = z.wl - = 0.5, Whav,o =
ﬁ, and Winfo0 = 39— = 2-107°. Each weight is scaled by the maximum possible value at a

goa cam

single instant in time in order to make their values comparable. The goal cost (when used) is taken to be
Wyoat = Whav,0 and the safety cost is always Wiope = 1010,

A. Navigation

The navigation mission is flight through an unknown, cluttered forest to a goal position followed by return
to the start position. This scenario provides two distinct phases which are analyzed separately. On the way
toward the goal the positions of the trees are highly uncertain since they are discovered as the aircraft flies.
On the return leg most of the trees have already been detected and the uncertainty in the world is much
lower. A forest of 100 trees randomly distributed over a 300m by 200m area was used for all simulations (see
Fig. 3). The vehicle start position was at (0,-15)m, the goal location was at (270,0)m with the goal region
being a circle of radius 4m around the goal. Results are averaged over 100 runs.

1. Control and Navigation Cost Only, Fized Range Safety Cost

For the first navigation scenario we consider the control and navigation costs only (the safety cost is always
used so we do not distinguish it) with obstacles set as circles of fixed radius (M = I and "parrier = Tsafe = 4m
in Equation 10) around the estimated target positions. Table 1 shows the cost weights used in this case.
Six different sets of adaptive parameters are considered (see Table 2). The first two correspond to short
and long fixed horizons, the third corresponds to the case when the long horizon is used except when a
new tree is detected in which case the short horizon is used, and the remaining three adapt the horizon
based on the effective velocity. Figure 5 shows a sequence of snapshots from one simulation run. On the
way toward the goal region (red triangle icon) the planning horizon is short since new, uncertain obstacles
are continually detected. On the return leg the uncertainty is constant (and low) so the planning horizon
lengthens.  The value of the adaptive planning horizon can be seen by looking at the trade-off between
computational effort and final trajecory cost for the different scenarios given by Table 2. Figure 6 shows
plots of (average) final cost versus (average) total computational time for each scenario during the outbound
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Figure 5. Example simulation results for Adaptl.
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Table 1. Weights used in ARHC Objective Function for Navigation with Control and Navigation costs only

Wu,O Wnav,O Wgoal Wsafe Winfo
0.5 0.0037 0.0037 1010 0

Table 2. Adaptive parameters

Run  w; ws ws  Avg cost (there) Avg comp.(there) Avg cost (back) Avg comp.(back)

Short 0.3 0.3 0 49603.14349 16.9078 68901.87951 40.6015
Long 1.0 1.0 0 49579.29843 66.5034 67156.60450 158.3957
Adapt0 0.3 1.0 0 49507.74310 35.2758 65953.23309 127.2858
Adaptl 0.3 1.0 -0.1 49469.96601 37.2773 66109.01196 128.8650
Adapt2 0.3 1.0 -1.0 49497.94139 33.8358 66198.47719 138.5768
Adapt3 0.3 1.0 -10.0 49488.86392 19.1661 69108.62187 114.0332

and return legs, respectively (error bars show 3 standard deviations around the mean, colored marker shows
the mean, dark marker shows the median). As expected, the short planning horizon uses the least amount of
total processing, the long horizon uses the most, and the adaptive approach falls between the two. Likewise,
the long horizon achieves a better (lower) final cost than the short horizon. Surprisingly, the adaptive horizon
achieves a better final cost than either fixed horizon. This implies that by adapting the planning horizon to
the information velocity we are able to approximate the cost-to-go more acccurately over the course of the
entire run. The adaptive horizon also has an order of magnitude better effect on the return leg compared
to the outbound case (the axis on the subplot of Fig. 6 are different). From the sequence in Fig. 5 we
see that the aircraft aminly encounters obstacles it has seen before. These obstacles have an initially high
information velocity (shorter horizon) after which they are well localized and a longer horizon is used to
complete the run. Thus, we see an example where neither the short nor long horizons would be applicable
and the adaptive control approach prevails. The Adapt3 case on the return leg gives the only anamolous
result for this scenario. It is unclear why the large adaptive gain led to an increase in the final trajecory
cost.

x10° To goal x10° Back to origin
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eoD>HO0 Y
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»
°
8
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*
.«

. . . . . 5501 . . . . . .
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Figure 6. Final trajectory cost versus total computational effort for navigation with fixed-radius obstacles.
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2. Control and Navigation Cost Only, Mahalanobis Distance Safety Cost

The second scenario repeats the first navigation scenario (same weight and parameter values in Table 1 and
Table 2) with the exception of how the safety cost is calculated. In this scenario the position estimate error
covaraince matrix is used to determine the M-weighted norm in Equation 10. This is done by taking the
covariance matrix that gives a specified confidence level (i.e. the "n-o” ellipse) and expanding it by the safety
distance 744f.. Let the it" relative position estimate error covariance have singular value decomposition

Prez,i=U["1 0 ]V. (38)
0 g9

The singular values of P, ; represent the lengths of the major and minor axis of a bounding ellipse while
the orthonormal matrices U and V define its orientation. The specified safety distance is added to each
singular value and the transformation matrix M; is created by re-multiplying by the orthonormal matrices
to yield

2 2
M, = U|: Ngyo1 + Tsafe 0 :|V (39)

2 2
0 ngo2 + 15 fe

where n, is a function of the desired confidence level (set to 3 here). The net effect is to stretch the bounding
ellipsoid by the distance ry,f. in the direction of both axes of the ellipse. The safety cost (Equation 10) is
then called using the matrix M; and 7pgprpier = 1.

Figure 7 shows the results of the simulation runs using variable-sized obstacles. Unlike the previous
example using fixed obstacle size, use of the expanded 3-c uncertainty ellipsoid M can cause dead-end
regions which the aircraft cannot pass through. Thus the planner backtracks before moving forward, causing
performance to degrade. The presence of outliers due to this backtracking behavior skews the resulting
distributions of computational time and final trajectory cost. The skewness in the distributions can be
inferred by the differences between the mean and median values on the plots. The computational times vary
as expected across the different planning horizons, while the trajectory cost distributions do not always show
improved performance for the adaptive cases.
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Figure 7. Final trajectory cost versus total computational effort for navigation with variable-sized obstacles.

3. Control, Navigation, and Information Cost

The final navigation scenario includes the information cost in order to encourage the aircraft to explore
the environment while heading toward the goal. The expectation is that by gaining more information early
about the obstacle positions, a better overall trajectory can be planned. The same adaptive weights as Table
2 are used as well as the same safety cost as the previous scenario. The objective function weights used here
are given in Table 3.
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Table 3. Weights used in ARHC Objective Function for Navigation with Information Cost

Wu,O Wnav,O Wgoal Wsafe Winfo
0.5 0.0037 0.0037 101 2.107°

Figure 8 shows the results of the simulation runs for this case. Like the previous two cases, the compu-
tational effort using the adaptive control horizon falls between the short and long horizons. Also like the
previous case, outliers due to dead-ends in the planning space cause a large dispersion in the final trajectory
costs and the adaptive horizon does not always perform better than the fixed cases. The intuition that the
information cost encourages exploration that ultimately benefits navigation performance is not supported
here. Table 4 shows that the navigation performance (navigation plus control costs only) degrades when the
information cost is included. It is possible that the information cost could help for different sets of relative
weights or for forests of greater density.
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Figure 8. Final trajectory cost versus total computational effort for navigation including the information cost
with variable-sized obstacles.

Table 4. Navigation plus control costs when also using information cost

with info (there)

with info (back)

w/o info (there)

w/o Info (back)

Short
Long
Adapt0
Adaptl
Adapt2
Adapt3

B. Exploration

60165.4129
59162.0455
62908.9870
64293.4725
60818.6930
60447.7105

86761.8653
79866.1791
77391.6527
68142.6702
72252.9765
83779.7672

59723.3446
58575.1626
64982.1420
63237.3960
59380.8093
59040.0368

79918.5642
72661.2957
74825.1412
73619.9793
68034.3710
78702.0819

The exploration mission is to determine the positions of uncertain targets in a given amount of time. Here
the only costs are the safety cost and the information cost since there is no explicit goal location. A forest
of 50 trees randomly distributed over a 300m by 200m area was used for all simulations (see Fig. 9 for a
sequence of plots from a representative run). Uncertain initial positions are given for every tree (e.g. from
satellite imagery taken in advance). The initial position estimates are determined by adding a random offset
taken from a zero-mean normal distribution with covariance Py = o3 - I where 03 = 40m. The estimator
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is initialized with the covariance matrix Py. The vehicle start position is at (0,-15)m. Results are averaged
over 100 runs. Table 5 gives the weights used in the objective function for these runs.

Table 5. Weights used in ARHC Objective Function for Exploration

Wu,O Wnav,O Wgoal Wsafe Winfo
0 0 0 1019 2.107°

Figure 9 shows a sequence of plots from a representative run. In this example the aircraft is able to
explore all but the upper right quadrant of the environment, where it is heading when the simulation runs.
Figure 10 shows the information cost for this run. Surprisingly, this cost is not monotonically decreasing
even though the error in the target locations is decreasing monotonically. This is due to the fact that the
information cost uses the relative position covariance. When the aircraft turns away from the target the
uncertainty in vehicle position causes the relative position uncertainty to grow. This implies that the global
target (and aircraft) position error covariances should be used for exploration missions while the relative
error is more appropriate for navigation missions.
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Figure 9. Example exploration run for Adaptl.

C. Target Intercept

The goal of target intercept or target prosecution is to bring the aircraft to one of the target locations whose
position is being estimated during the run. This is accomplished using the navigation costs and setting the
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Figure 10. Exploration (information) cost versus time for typical run.

goal location to the target location, i.e. Py, = P,- In these simulations we only consider a single target
obstacle which we want to hit. Although this configuration causes the absolute position errors of the aircraft
and target to diverge relatively quickly, this divergence is correlated and the relative position errors are still
reduced by the SLAM filter during the run.

Table 6 summarizes the results of the target intercept scenario using a combination of information and
navigation costs. The four different cases use the same adaptive parameter values of wy; = 0.3, wy = 1.0,
and wg = —1.0. The aircraft starts at[0, —15]m, the target has initial position [100,50]m, and the camera
range is 110m. The simulation is run for 13 seconds and the closest approach point is reported. Figure 11
shows the resulting paths for the four different cases. Because information is optimized when the aircraft is
over the target, the information cost only (Casel) still results in interception of the target. Increasing the
navigation cost straightens the trajectory until it heads straight at the target (Case4) with no information
gathering maneuvers. Since only one result is presented for each case, the trajectories do not capture the
random distribution of the ARHC performance for this scenario. However, the results still validate use of
the ARHC approach for target prosecution.

Table 6. Target prosecution results

Winfo,0 Whav,0 CAP [m]| trace(P finar) [m?]

Casel 2-107° 0 1.087732115 33.80919093
Case2 2-107° 3.7-1077 2.293602561 80.99330756
Case3 2-107° 3.7-107°% 5.791082359 172.9369641
Cased 2-107° 3.7-107% 0.175401541 158.5912546

D. Cooperative Standoff Tracking

The final mission scenario is cooperative standoff tracking in which two aircraft follow a moving target while
maintaining a specified distance from the target. Here we are interested in reducing the uncertainty in
the target position estimate and we use the same weights as the exploration example. Since the SLAM
algorithms described above only apply to estimation of static targets by a single vehicle, we must make
several simplifications here. Rather than performing estimation, we use the true target state and the Fisher
Information in place of the estimated values. This simplification allows us to focus solely on the planning
algorithms for this scenario.

The ground target is assumed to move at a constant-velocity with no acceleration (i.e. no process noise).
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Figure 11. Final paths for target intercept scenario using an adaptive horizon.

Since this model is deterministic the expectation in the measurement term (Equation 24) of the FIM is
removed and we use the recursion of Equation 23 with Q, = 0 and

Dy, (40)

o o o
o o~ o
o= oHX
— o o

where the target state is now %X, = [z, y, &, ¥].

The cooperative tracking task is an example of a distributed system with coupled dynamics (the target
uncertainty) and coupled constraints (collision avoidance). The latter coupling is ignored here by assuming
the vehicles use altitude separation. In order to address the dynamic coupling, we use a cascaded control
approach. Rather than solving the full state optimization (which would require centralization) each aircraft
solves its own local ARHC optimization. The cascade approach lets the first aircraft plan its path ignoring
the second one, while the second aircraft plans its trajectory given the planned trajectory of the first. In
other words

Uy g g, = argmin Jppe(X kg, Utk k4 T), (41)

and
U3 g gy, = A8 MIN Jrpe (X2 ke, U2 ke bt T X1 e, Wt e ot 7). (42)

Cooperative behavior emerges from this approach since the objective functions are still coupled by the
target uncertainty. Both vehicles use the same errror covariance matrix (and therefore also calculate the
same adaptive horizons) and the second vehicle includes the first vehicles contribution to the FIM of the
target while determining its trajectory. Standoff tracking is achieved using the safety cost (either fixed-radius
or variable-size) to prevent the aircraft from approaching too close to the target.

For the simulation run here the aircraft started at initial conditions x; = [1040, —60jm and xo =
[1040,500jm. The target begins at [1100,0]m, moves with constant velocity [15,0]m/s, and has initial
position and velocity variances of 012, = 10m? and 02 = 1m?/s?, respectively. The adaptive parameter values
used here were wy = 0.5333, wo = 2.6667, and w3 = —10.0. The entire simulation was run for 100s.

Figure 12 shows a sequence of plots from the simulation run. The field of view limitations are not
explicitly considered in the planning process, but since no information is gained when the target leaves the
field of view, use of the information cost still keeps the target in view most of the time. Figure 13 shows the
performance of the ARHC planner during the simulation by overlaying the information cost and planning
horizon as functions of time. The initial uncertainty decreases quickly so the planning horizon is short at
the beginning of the run. As the estimate improves and the uncertainty reaches steady state, the planning
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Figure 12. Cooperative standoff tracking simulation.

horizon becomes long. In this example position information can be lost when the target leaves the field of
view of both cameras due to the uncertain velocity, so the information cost does not monotonically decrease.
Because the uncertainty grows when the target leaves the field of view, the planning horizon will shrink when
this happens. Unlike the navigation and exploration tasks, this could be detrimental to mission performance
since the system needs to turn back toward the target as quickly as possible.
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Figure 13. Final trajectory cost versus total computational effort for exploration.

VI. Conclusion

This paper has presented an integrated system for navigation using vision as the primary exteroceptive
sensor. Bearings-only navigation has an inherent dynamic observability property such that specific motion is
needed in order to determine the relative positions between the camera and obstacles. Thus, the estimates of
new obstacles are always highly uncertain and information about the obstacles is dependent on the relative
motion between the camera and objects. We present an adaptive receding horizon planner that incorporates
information metrics explicitly into the receding optimization cost function. The adaptive horizon is based
on the intuition that when the information about the world is rapidly changing, planning does not need to
be long. Control and planning horizons are computed based on the sensor range and the effective speed of
the UAV, which is computed as a weighted sum of estimated vehicle speed and time rate of change of the
uncertainty of the obstacle position estimates.

Simulation results demonstrated the validity of the adaptive horizon approach by comparing the adaptive
algorithm to short and long fixed horizon controllers. As expected, the computational effort required by
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the adaptive controller always fell between the short and long horizon cases. For the baseline navigation
experiment with fixed-size obstacles the adaptive case also led to trajectories with lower (better) final cost.
This supports the claim that the adaptive horizon yields more accurate estimates of the cost-to-go of the
system over the course of a run. Validation for the other navigation scenarios was complicated by outliers
in the data due to deadend paths in the planning space. The adaptive receding horizon controller was also
applied to several other missions including exploration, target intercept, and cooperative tracking. Although
performance was not always ideal for these examples, the simulations showed that the adaptive receding
horizon control framework integrates a wide variety of missions into a single guidance layer control system.
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