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Abstract

We present a method for navigation of a small unmanned rotorcraft through an unsurveyed envi-

ronment consisting of forest and urban canyons. Optical flow measurements obtained from a vision

system are fused with measurements of vehicle velocity to compute estimates of range to obstacles.

These estimates are used to populate a local occupancy grid which is fixed to the vehicle. This

local occupancy grid allows modeling of complex environments and is suitable for use by generic

trajectory planners. Results of simulations in a two-dimensional environment using a potential field

obstacle avoidance routine are presented.

Introduction

Currently, many unmanned aerial vehicles (UAVs) operate at high altitudes where the region is free of

obstacles. However, this limits the tasks which can be performed. Missions envisioned for small UAVs

now require low altitude flights among many obstacles (e.g. search and rescue in forests or surveillance

in urban canyons). The Department of Defense (DoD) lists reconnaissance as the number one priority for
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all classes of unmanned systems and specifies passive detection as a goal for all unmanned systems [15].

Current technologies for detecting obstacles rely heavily on LIDAR and RADAR, large active sensors. In

addition to the restrictions imposed by passive sensing, navigating small vehicles in confined areas adds

significant complications: vehicle performance requirements are very stringent due to requirements im-

posed by obstacle avoidance; and sensing payloads are restricted in both weight and power requirements.

This paper is concerned with obstacle avoidance for small autonomous rotorcraft operating in complex,

cluttered, unsurveyed environments. The primary focus is on generating a local map of the environment

which is suitable for use with generic control and planning algorithms.

With the advent of low-cost, light-weight and low power CCD cameras, the use of vision systems for

obstacle avoidance has become an active field of research. In addition to low power requirements and light

weight, vision sensors are passive, reducing the probability of detection. Vision based techniques such

as structure from motion seek to build a three-dimensional model of the surrounding environment using

known motion of a monocular camera (e.g. [10]) but this is typically formulated as a batch process and is

thus not suited for real-time implementation. Feature-based techniques such as Simultaneous Localization

and Mapping (which have the advantage of not requiring the availability of camera motion measurements

through external means such as GPS) quickly become intractable in large environments or environments

where obstacles are difficult to define by features [7, 8].

Optical flow has been used for obstacle avoidance or ground speed estimation by several researchers

(e.g. [9, 11]). However, direct reliance on measurements of optical flow for obstacle avoidance results in

low robustness to noise and sensor dropouts. Using measurements to generate a map of the environment

can greatly improve performance. Further, this map can be shared if a flock of UAVs conducts a coop-

erative mission. Here we generate a local map by fusing measurements of optical flow obtained from a

vision system with measurements of vehicle velocity from GPS using an occupancy grid [3].

This paper describes the procedure for generating the local map and combines the local map with a

control algorithm based on a potential field approach [5]. To demonstrate the effectiveness of this approach

we present results of simulations of navigation through a two-dimensional environment consisting of a

forest and an urban area based on the McKenna Military Operations in Urban Terrain (MOUT) site at Fort

Benning, Georgia.
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Related Work

Most unmanned vehicle systems which map the surrounding terrain use LIDAR and RADAR to detect

obstacles. Stanley, the vehicle that won the DARPA Grand Challenge, used the measurements of five

scanning laser range finders to create an occupancy grid. The use of cameras was limited to color and

texture matching (e.g. finding the color and texture of a dirt road instead of vegetation) [14]. Scherer et.

al. recently successfully flew an autonomous helicopter through the McKenna MOUT site at Ft. Benning,

GA [12]. Their helicopter used a LIDAR system to create a map of the surroundings and IMU and

differential GPS measurements to estimate the helicopter state. The use of LIDAR provides a near perfect

map of the surroundings (able to detect a 6mm wire from 38m away) which greatly assists navigation but

comes at the high cost of power, weight, and electromagnetic emissions.

Vision based estimation methods have been popular recently due to low power and weight require-

ments. Hrabar et al. have fused optical flow and stereo vision measurements on both a tractor and

unmanned helicopter to fly in urban canyons [4]. While the fusion system worked well, optical flow

measurements could keep the tractor centered in a corridor but was less effective in navigating turns

Kim and Brambley proposed a system to hold a constant altitude by fusing two optical flow measure-

ments from optical mouse sensors in an extended Kalman filter [6]. With dual optical flow, they are able to

estimate both velocity and distance to ground. However, they make use of a terrain map to predict optical

flow measurements. Chahl and Mizutani also propose an optical flow method for ground avoidance [2].

Using one camera to measure optical flow at each pixel, they generate an elevation map of the terrain

ahead. Zufferey and Floreano also use 1-D cameras for optical flow measurements to turn away from

textured walls [16].

These approaches did not seek to generate a local map, rather, they used optical flow directly to com-

pute a control input. Braillon et al. use stereo and optical flow to populate an occupancy grid representa-

tion of the local environment, but their approach requires identification of a ground plane [1].
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Problem Statement

The situation considered here is an aircraft flying through an unsurveyed obstacle field consisting of

small, convex obstacles (such as tree trunks) and large, potentially non-convex obstacles such as buildings

(Fig. 1). An on-board camera obtains measurements of bearing and optical flow while GPS provides

measurements of velocity and heading.

x

y

xb

yb

ψ

xo

yo

Fig. 1 Navigation/avoidance scenario. The au-

tonomous rotor craft must fly to a goal (not shown)

while avoiding small, convex obstacles (e.g. tree

trunks) as well as large, potentially non-convex ob-

stacles such as buildings.

The aircraft is located at position x, y in an

Earth-fixed frame. Coordinate frameO (defined

by xo and yo) translates with the aircraft (keep-

ing the CG of the aircraft at the origin of frame

O), but holds a constant North-East orientation.

The orientation of the body frame B (defined

by xb and yb) is defined by the heading angle ψ,

and body-frame velocities are defined by u and

v.

The problem is to estimate the location of

obstacles and reach the goal while avoiding col-

lisions with obstacles. As vehicle states are ob-

tain using GPS the problem essentially becomes

that of mapping and obstacle avoidance. As this

problem involves navigating through any unsur-

veyed terrain, obstacles could be large or small.

The rotational freedom of the vehicle introduces a non-linearity to the problem through the kinematic

model. Additionally, the projection of the three-dimensional world onto the two-dimensional image plane

and then conversion to bearings and optic flow also creates non-linearities in the sensor model. These

both complicate the problem of mapping.

Information about obstacles is only available from measurements of bearing and optical flow, thus

camera motion (aircraft motion) is essential. Unfortunately, obstacles directly in the path of motion (which



AHS Log No. 5

we would like to avoid) generate almost no optical flow and no information for a range estimate; transverse

motion is required to produce a useful estimate of obstacle location. This transverse motion does provide

the benefit of ensuring that collision is avoided.

The techniques described here to address these problems are applicable to full three dimensional, six

degree of freedom flight. Here we consider flight in a two dimensional environment.

System Description

Heading
Generator

Flight
Control

Aircraft
Dynamics

Estimator

GPS

Camera

ψdes

zcam
mocc

x̂v

Fig. 2 System block diagram

The block diagram in Fig. 2 shows a system that

uses the given sensors (GPS and a monocular cam-

era) to perform obstacle avoidance. The GPS sen-

sor outputs estimates of vehicle states, x̂v (velocities

and heading of the vehicle). The vehicle state esti-

mates and the camera measurements zcam (bearings

and bearing rates to obstacles) are fused in the esti-

mator which computes estimates of obstacle ranges

along with the associated covariances. These estimates are then integrated into the occupancy grid which

is given to the heading generator, which computes a desired heading ψdes (steering away from obstacles

and trying to get to the goal). The difference between the desired heading and the current estimated

heading is used by the flight controller to generate control inputs.

It is assumed that the flight control system is able to maintain stable, controlled flight.
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Kinematic Model

Vehicle rotation is expressed as angle ψ relative to frame O. Velocities u and v are expressed in the

body frame b. The control inputs are u̇, v̇, and ψ̇.

ẋ = u cosψ − v sinψ (1)

ẏ = u sinψ + v cosψ (2)

ψ̇ = ω +N (0, σ2
ω) (3)

u̇ = ax +N (0, σ2
ax

) (4)

v̇ = ay +N (0, σ2
ay

) (5)

Here N (0, σ2) denotes a Gaussian random variable with covariance σ2.

Sensor Model

The camera is fixed to the aircraft looking towards the front of the vehicle (along the xb axis). The

camera obtains measurement of optical flow (bearing rates) along a set of bearings [β1, β2, ...βn], so that

the optical flow along the ith bearing is modeled by Eq. (7). This is equivalent to having an array of optical

flow sensors, the ith pointing along βi.

βi = arctan
yi,O
xi,O
− ψ (6)

β̇i =
u sin βi
ri

− v cos βi
ri

− ψ̇ +N (0, σ2) (7)

Where xi,O and yi,O are the coordinates of the obstacle nearest the vehicle in the ith “bin” (defined by

βi ± ∆β
2

), expressed in frame O and ri is the distance between the camera and the obstacle.

In addition to range, vehicle velocity [u, v] and turn rate ψ̇ affect the optical flow measurement. If

these are known, then range to the obstacle can be computed.

Estimator Design

Once estimating obstacle location, a method of mapping the obstacles is necessary. A Kalman filter

based approach will work well for an environment with scattered, point obstacles (like the forest). How-
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ever, it does not lend itself to a more complex environment (e.g. urban canyons or interior corridors) as

the number of states to estimate grows increasingly large and data association grows increasingly difficult.

A different approach is necessary: here we use an occupancy grid, which is a numerical implementation

of a Bayes filter for a static environment.

yb

xb
yo

xo

Fig. 3 Schematic of occupancy grid. Cells which are

known to be free are white, those which are known to

be occupied are black, those which are unknown are

grey. Coordinate frames and the vehicle are shown at

the origin of the grid.

Qualitatively, an occupancy grid is a map-

ping algorithm which computes the likelihood

that discrete regions of the environment (cells)

are occupied by an obstacles. This is shown

schematically in Fig. 3.

Once the probabilities of occupancy for cells

surrounding the vehicle are known, a control or

planning algorithm can be used to compute a

path to the goal which minimizes the likelihood

of collision.

While occupancy grids have been well docu-

mented (e.g. [3,13]), for completeness a deriva-

tion is presented here. This section follows the

derivation given in Thrun [13].

The Bayes filter for a map of a static envi-

ronment is

p(m|z1...t, x1...t) =
p(zt|m,xt) p(m|z1...t−1, x1...t−1)

p(zt|z1...t−1, x1...t)
(8)

where m represents a particular map, z denotes measurements, x denotes vehicle state, t represents the

current time step and p(m|z1...t, x1...t) represents the probability that a particular map m is correct, given

measurement history z1...t and vehicle path x1...t (i.e. our belief in the correctness of m).

The first term in the numerator is the sensor model, the probability of getting a measurement based

on the map and current state. The map is not known, and what is desired is the probability of the map

based on the measurements obtained. To achieve this, Bayes’ Rule
(
p(A|B) = p(B|A)p(A)

p(B)

)
is used for the
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sensor model of Eq. (8) to yield Eq. (9).

p(m|z1...t, x1...t) =
p(m|zt, xt) p(zt|xt)

p(m|xt)
p(m|z1...t−1, x1...t−1)

p(zt|z1...t−1, x1...t)
(9)

We then assume that the measurement probability is independent of state, i.e. p(zt|xt) = p(zt), and

that the map is independent of the state, i.e. p(m|xt) = p(m). This simplifies Eq. (9) further to:

p(m|z1...t, x1...t) =
p(m|zt, xt) p(zt)

p(m)

p(m|z1...t−1, x1...t−1)

p(zt|z1...t−1, x1...t)
(10)

An occupancy grid is a numerical implementation which divides the environment into a finite number

of cells, and we compute the probability that each cell is occupied [3]. This results in a binary estimation

problem over all possible maps. However this can also pose a computational problem. An environment

with M cells has 2M possible maps. To make the problem tractable, we assume that the probability

of a particular cell’s occupancy is independent of all other cells. We now estimate p(mj|z1...t, x1...t) for

j = 1 . . .M . For each cell, p(mj) = 1 means that the cell is occupied.

To make the problem numerically better conditioned and easier to implement computationally, we

represent the occupancy in log-odds form. First we compute the odds form of Eq. (10)

o(mj|z1...t, x1...t) =
p(mj|z1...t, x1...t)

1− p(mj|z1...t, x1...t)
=

p(mj|zt, xt)
1− p(mj|zt, xt)

p(mj|z1...t−1, x1...t−1)

1− p(mj|z1...t−1, x1...t−1)

1− p(mj)

p(mj)

(11)

which simplifies Eq. (10) by canceling the p(zt| . . . ) terms. The factor p(mj) is the initial probability that

the jth cell is occupied. Since the environment is initially unsurveyed, the initial probability of occupancy

is p(mj) = 0.5, thus the last term on the right simplifies to 1.

Finally, the log-odds form of the occupancy grid is obtained by taking the logarithm of Eq. (11):

lt,j = log o(mj|z1...t, x1...t)

lt,j = log
p(mj|zt, xt)

1− p(mj|zt, xt)
+ log

p(mj|z1...t−1, x1...t−1)

1− p(mj|z1...t−1, x1...t−1)
(12)

The second term on the right hand side of Eq. (12) is simply the accumulated log-odds of occupancy

over all previous time steps:

lt,j = log
p(mj|zt, xt)

1− p(mj|zt, xt)
+ lt−1,j (13)

Hence we have a recursive equation to compute the occupancy of the jth grid cell. This can be imple-

mented easily and efficiently.
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The first term on the right hand side of Eq. (13) is the inverse sensor model (i.e. the increment in log-

odds occupancy of the jth grid cell given a sensor measurement zt. Given that there are usually multiple

measurements, in this case one for each bearing βi, inverse sensor model for each measurement can be

added together. Supposing there are k measurements

lt,j =
k∑
i=1

log
p(mj|zt,i, xt)

1− p(mj|zt,i, xt)
+ lt−1,j (14)

Functionally, detecting an obstacle in a grid cell means we increment the log-odds of occupancy in that

cell by some amount while we decrement the log-odds of occupancy of cells lying between the occupied

cell and the vehicle. Cells outside the sensor field of view remain unchanged. The amount of the increment

and decrement is dependent on the inverse sensor model.

Inverse Sensor Model

The sensor model divides the camera’s field of view into bins of equal angular width, and the maximum

optical flow measured in each bin is used as the measurement. This can then be used to estimate the

distance to the closest object in that bin by solving Eq. (7) for ri.

ri =
1

β̇i + ψ̇
(u sin βi − v cos βi) (15)

To compute the uncertainty in the range estimate (caused by noise in bearing and optical flow measure-

ments and by uncertainty in heading rate and velocity), the Jacobian of the equation for ri is computed

and used to compute the range uncertainty:

∇ri =

[
∂ri
∂u

∂ri
∂v

∂ri
∂β

∂ri

∂β̇

∂ri

∂ψ̇

]T
(16)

σ2
ri

= ∇T
ri



σ2
u 0 0 0 0

0 σ2
v 0 0 0

0 0 σ2
β 0 0

0 0 0 σ2
β̇

0

0 0 0 0 σ2
ψ̇


∇ri (17)

where σ(·) represents the standard deviation of noise associated with the relevant state or measurement.
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In addition to the Gaussian uncertainty described by σri , the sensor model must reflect the intuition that

the space between the camera and the detected obstacle is unoccupied and the space behind the detected

obstacle remains unknown. To model this behavior a sigmoid curve and the Gaussian described above

were combined to produce an occupance weight as a function of range:

fi(r) =
−c1

σri
√

2π

{
1 + exp

[
2π(r − r∗i + 2σri)

σri
√

3

]}−1

+
c2

σri
√

2π

{
exp

[
−(r − r∗i )2

2σ2
ri

]}
(18)

Here r∗i is the estimated range obtained from the optical flow measurement in the ith bearing. The

factors c1 and c2 are used to scale the two contributions to the probability of occupancy and to account for

normalization.

Since the total camera field of view is divided into angular bins, the probability of occupancy must be

computed over the width of a bin. A sigmoid function is used to compute a value as a function of angle ξ

from the bin centerline:

gi(ξ) =

(
1 + exp

∣∣∣∣c3(ξ − βi − wβ)

wβ

∣∣∣∣)−1

(19)

where c3 is a weighting parameter.

For the jth grid cell located at xj, yj with respect to the vehicle, the probability of occupancy induced

by a measurement of optical flow in the ith bin can be computed by evaluating r and ξ for that cell and

computing

p(mj|zt, xt) = fi(rx,y)gi(ξx,y) (20)

for a measurement zt. Computing the log-odds and summing over all measurements completes the inverse

sensor model. An example is shown in Fig. 4.

Local Occupancy Grid

Typically, occupancy grids remain globally fixed while the vehicle moves through the grid. This allows

for a simple implementation; however, as the vehicle explores the environment, the map quickly grows

large and becomes computationally intractable. Since we are interested in local obstacle avoidance a local

occupancy grid (fixed to the vehicle) is used. A local occupancy grid has a limited size governed by sensor

field of view and computational considerations, and can thus be adapted to the specific hardware available

on a particular vehicle.



AHS Log No. 11

0 5 10 15 20 25
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

(a) Range vs. probability for r∗ = 15 and

σ2
r = 2. Note the comparatively low proba-

bility of occupancy for r < r∗.

(b) 3-D view of sensor model in log-odds

form

Fig. 4 Example of the Inverse Sensor Model. Regions outside the sensor field of view (or occluded by

obstacles) have zero change to their log-odds of occupancy.

Computationally the occupancy grid representation of the environment can be treated as an image

(Fig. 3), hence techniques developed for image processing (e.g. blurring, convolution, rotation) and li-

braries used for image processing (e.g. OpenCV) can be used to translate and rotate the local occupancy

grid as it moves with the vehicle. In this implementation the grid translates with the vehicle but its ori-

entation remains fixed in frame O. Keeping the orientation fixed eliminates the need to create a rotation

convolution, a time consuming task. Additionally, in a grid rotation, some information is lost due to

blurring as rotated cells may map to multiple cells.

Fig. 5 Translation of occupancy grid.

Translating the occupancy grid with the vehicle means that a

motion update must be performed on the occupancy grid. Here

this is performed using a convolution. However, this introduces

blur when the translation does not map one cell exactly to an-

other (Fig. 5). The top image shows the initial occupancy grid,

with the center cell known to be occupied. Translation by a

fraction of a grid cell (middle image) means that the probability
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of occupancy must be split over the neighboring cells (bottom image), introducing a blur. This blur artifi-

cially decreases the belief in occupancy (or freedom) of a grid cell. To reduce the artificial blurring motion

updates were only performed when the translation was greater than or equal to the length of a grid cell.

Additionally, the motion updates were performed separately in the xo and yo directions. Not only does this

reduce some of the blurring, but also decreases computational time as performing two one-dimensional

convolutions is less computationally intensive than one two-dimensional convolution.

Note that the artificial blurring can also be reduced by increasing the resolution of the occupancy grid.

This comes at the cost of increased computation requirements.

Vehicle Control

In this work, the desired heading is computed using a potential field generated using the occupancy

grid combined with a term to represent the goal. Regions of high probability of occupancy represent high

potential (to be avoided) and the goal is represented by a sink. The vehicle is then commanded to steer

in the direction of the gradient. This gradient is computed at the vehicle (i.e. the origin of the occupancy

grid) as

∇ = (1− wg)K ∗ ∇grid + wg∇goal (21)

where wg is a factor to weight goal seeking vs. obstacle avoidance, K is a blurring kernel (to be discussed

later), ∇grid is the gradient of the occupancy grid and ∇goal is the gradient induced by the goal. The

desired heading is computed from∇ as

ψdes = arctan
∇y

∇x

(22)

where∇y and ∇x are the y and x components of the gradient∇, respectively.

Finally the vehicle turn rate command is

ω = c6(ψdes − ψ)c7 (23)

where ψ is the vehicle’s current heading.

Figure 6 shows the steps in creating ∇grid (the gradient due to the occupancy grid). Only a region

in the vicinity of the vehicle (here, any cell more than 9 grid cells away from the vehicle is ignored) is
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considered when computing the gradient. First a Prewitt edge detector is used to find gradients in both the

xo and yo directions. Since this will give large values only at edges (i.e. at boundaries between occupied

and unoccupied space) the blurring kernel K is introduced to allow the effect of edges to be “felt” earlier.

This kernel was created in two parts: first, gradients near the vehicle should be weighted heavily, but

values at a distance should still be included to cause the vehicle to turn before it strikes them; second,

gradients due to obstacles in the direction of motion should have greater influence on desired heading

than those from obstacles already passed.

First, a Gaussian was used to blur the gradient field in all directions with the standard deviation being a

function of vehicle speed. This allows the gradient influence to be a function of time, ‘sensing’ obstacles

that are a certain time away, allowing time to avoid them.

σblur =
c4(
√
u2 + v2 + c5)

∆grid

(24)

where ∆grid is the length of a grid cell and c4 and c5 are parameters which allow further tuning of the

blurring kernel in its dimension and standard deviation. Second, a Gaussian was used to more heavily

weight the obstacles which are in the direction of motion. These two factors were combined to create the

kernel K

kx,y = exp

(
−

r2
x,y

2σ2
blur

)
∗ exp

(
−
ξ2
x,y

2σ2
dir

)
(25)

where kx,y are the components of K, rx,y is the distance from a grid cell to the vehicle, ξx,y is the angle

between the unit vector to the grid cell and the direction of motion and σdir is the width of the directional

blur. Figure 6(c) shows the resulting kernel for motion diagonally upwards and to the right; Fig. 6(d)

shows the result of applying the directional blurring kernel to the initial gradient, shown in Fig. 6(b).

The goal gradient∇goal is simply a unit vector in the direction of the goal.

The vehicle is located at the origin of the occupancy grid, which is at the corner of four grid cells. Thus

the gradient ∇ is evaluated at the centers of the four nearest grid cells and the average value is used to

compute the desired heading direction.

To allow smaller radius turns (which may be necessary in environments with densely packed obstacles)

a speed controller was implemented. This allows the vehicle to accelerate (up to a maximum speed) when
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(d) Blurred Gradient

Fig. 6 Creating the potential field due to the occupancy grid at 31.1 seconds. Subfigures (a) and (c) use

the same color bar. The vehicle is shown by the cranked triangle. Motion is upwards to the right.
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flying straight and decelerate (to a minimum speed) when large turn rates are commanded.

ax = c8 − c9ω (26)

Here c8 and c9 are the acceleration control parameters.

Simulation

Fig. 7 McKenna MOUT Site at Ft. Benning, GA

A simulation is run to demonstrate the al-

gorithm. The unmanned rotorcraft starts at

the edge of a forest, represented by round tree

trunks. After navigating through the forest,

it enters an urban setting modeled after the

McKenna MOUT Site in Ft. Benning, GA,

as seen in Fig. 7. A goal location is placed

within the town limits. This environment com-

bines both small convex obstacles (tree trunks)

and large possibly concave obstacles (build-

ings). For these simulations vehicle kinematics

were assumed to be non-holonomic (i.e. v and v̇ were set to be 0). This is a more challenging example

of kinematics than that provided by a holonomic vehicle both from the standpoint of map generation and

obstacle avoidance: turns are required both to avoid obstacles and to ensure that obstacles directly ahead

of the vehicle are accurately resolved.

The tree locations were randomly generated each run and the dimension of the trees (axes of the

ellipses representing the trunks) were also randomly generated. To minimize ‘clumping’ of the forest no

two trees were allowed to be closer than 7 meters apart and the trees ranged from 0.5 meters to 1.5 meters

in diameter.

For the results specified below, the camera was assumed to have a 90◦ field of view and there were 24

measurements bins, each 3.75◦ wide. Camera range was 25 meters, so the size of the occupancy grid was

50 meters on a side. As the smallest obstacle to identify was no smaller than 0.5 meters, the grid cells
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were chosen to also be 0.5 meters on a side. The rest of the parameters and constants are listed below.

σuest = 0.4 m/s σax = 0.05 m/s

σψest = 1◦ σω = 2◦/s

σβ = 1.875◦ σβ̇ = 0.1◦/s

c1 = 2 wg = 0.93

c2 = 2 c6 = 1.1

c3 = 15 c7 = 0.85

c4 = 0.5 c8 = 0.9

c5 = 4 c9 = 1.2

Limited tuning was performed on control law parameters (wg and c6, c7, c8, c9

Additionally, limits were set on the helicopter speed and turn rate.

1.5 m/s ≤ u ≤ 5.5 m/s

−70◦/s ≤ ψ̇ ≤ 70◦/s

Results

Figure 8 displays the results from a representative run of the simulation. The vehicle successfully

navigates through narrow corridors until it reaches the goal. Obstacles (shown in gray) were precisely

and accurately identified, except for those directly in front of the camera (as expected). Note that the

gradient-based approach to control causes the vehicle to steer away from “unknown” space, thus causing

the vehicle to turn to improve its knowledge of the area directly in front.

As a particular obstacle remains within the field of view it is localized with greater accuracy. Further,

the confidence that space thought to be unoccupied actually is free space increases with time in the field

of view. Further, the occupancy grid maintains its ‘memory’ of space which has left the field of view.

Note that the gradient-based control algorithm implemented here only accounts for the area within 7

meters of the vehicle. While it worked very well for both obstacle avoidance and navigation to the goal, it

(like all potential field approaches to path planning) is subject to local minima and the possibility of flying

into dead ends. This can be avoided by implementing a global planner and treating obstacle avoidance

as a local perturbation (this is done in [12]) or by using a longer-range planner to compute a path to the
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(b) 22.9 Seconds
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(c) 28 Seconds
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(d) 40 Seconds

Fig. 8 Sequence of images from representative run. The vehicle is shown as a red cranked triangle, camera

field of view is shown as green dashed lines. Red represents a high probability that a cell is occupied;

blue represents a low probability that a cell is occupied (i.e. high probability that the space is free). Green

represents a 50% probability (uncertainty) that a cell is occupied. Obstacles are shown as gray lines, the

magenta dot is the goal.
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edge of the occupancy grid. This will improve trajectories flown at the cost of increased computation

requirements.

Conclusion

This paper has presented an algorithm for generating a map useful for navigating a small unmanned

rotor craft through a previously unknown static environment using only a monocular camera and mea-

surements of vehicle speed.

The camera’s field of view is divided into bins of equal angular width. The maximum optical flow in

each bin is used along with measurements of vehicle speed to compute an estimate of range to the nearest

obstacle in that bin. These range measurements are used to generate an occupancy grid representation

of the environment in the vicinity of the vehicle. This occupancy grid representation allows modeling of

both small and large obstacles and can be used by trajectory planning algorithms to find a safe, feasible

path to the goal.

Simulation results show a very accurate and precise map can be generated from measurements of

optical flow. Further, this map has been combined with a potential field-based obstacle avoidance and

navigation algorithm to demonstrate safe flight to a goal in a complex, cluttered environment which was

previously unsurveyed.
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